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Husky or wolf?
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Husky or wolf?
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Ribeiro, Singh, Guestrin. “Why should i trust you?” Explaining the predictions of any classifier. KDD 2016



The model works well for most of these images

Ribeiro, Singh, Guestrin. “Why should i trust you?” Explaining the predictions of any classifier. KDD 2016



But it classifies mostly based on the background

Ribeiro, Singh, Guestrin. “Why should i trust you?” Explaining the predictions of any classifier. KDD 2016



Can we avoid such biases In
ML models for network traffic?
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.gfobal cyber defense e>




Locked Shields is the largest live-fire
global cyber defense exercise

= Red Team vs. Blue Team exercise
| |

Attackers Defenders

1 Team 1 Team / country

= CnC using Cobalt Strike

= Teams get a recording of their traffic
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4 years ago, we presented a system
which uses Al to identify C&C channels
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We use datasets from two countries during
four iterations of Locked Shields
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Datasets:

0111
1011

0111
1011

0111

1011

0111
1011

0111
1011

14M flows

21M flows

63M flows

52M flows

40M flows



We label all flows from or to
a C&C server as C&C traffic

For each flow:

If (source or destination €

List of C&C
servers

Then: flow is<:>c&c
Else: flow is () normal

End If
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Our baseline is the best performing model

from previous work

» Random forest model
= Maximum tree depth: 10
= Number of trees: 128
» Trained with 20 features

TABLE IV: THE TUNED MODELS ACHIEVE HIGH PRECISION AND RECALL (MEDIANS)

Model
LS17-baseline
LS17-tuned
LS18-baseline

LS18-tuned

& cycon

Precision

0.94

0.99

0.98

0.99

Recall

0.98

0.98

0.86

0.90
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We trained models for four iterations
of Locked Shields

Training data LS17
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We evaluated the models also with
data from an other country

Test data

Ls17 [y Ls1sfy Ls19f§ Ls21y Ls21[E)

Training data LS17
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Training and testing with data from the
same year leads to good results

Test data
Ls17 [y Ls1sfyj Ls1ofy Ls21fy Ls21E)
Training data Ls17 [ |0.993
Ls18 [N 0.993
LS19 [ 0.791
Ls21 [N 0.986
F1 scores
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Testing models in a different year
leads to lower scores

Test data
Ls17 [y s1sfly s19f§ s21fy s21E)
Training data LS17 [L3) 0.993 0.966
Ls18 [N 0.945 0.993
LS19 A 0.743 0.928
Ls21 [ 0.952 0.918
F1 scores
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Testing models in the data of a different year
leads to very low scores

Test data

Ls17fy Ls1sfiy Ls19fy Ls21iy LSZ1B

Training data LS17

F1 scores
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Challenges of transferring models
to different datasets

Blue Team

Networks

10.X.0.0/24
VLAN:1XX0

rLisplex

10..6.3: Gamenet Interface
10.0.1XX 63: Management Interface
XX: Blue Team number in 2-digit
format, E.g.01, 02, 10

_1050.X.0/24-~
@»»“” VLAN:15KK

cst.mil(X-1).ex

BlueX Military Mission Networks (UNCLASS)

20pLex pSNGSONX
u,

csrmilX.ex
10X5.2/24
10.0.1XX.2

10X5.0/24

Q‘L‘ Qé\ g{;\ g& 10";|::;u

fw.milX.ex

43./24
100/1XX31

dnsmibex  mallmibex  www.milXex - tv.mi.ex
o6 10X63 1064 fes
Choe  motoes  I0OIKAH  1001KK6S
PR Web
(SMTPgateway)  (PRWeb) MIL_DMZ
wel.milX.ex

e@ 10X7.0/24

] V \:IXX

-

wsl.welmilX.ex
10X.7.171
10.0.1XX.171

%

ws2.wel.milX.ex
10X7.172

100.1Xx.172 MIL_WEL: welfare area

N N
C W W 8

deintmilX.ex filesint.milex  logint.milX.ex onion.int.milX.ex
10X.32 10X3.3 10X35 10X3.6
100.1X32  100.1XX33 10.0.1X%.35 10.0.1%%36
Domain File Server
Controller
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wsLint.milX.ex ws2.int.milX.ex ws3.int.milX.ex wsd.int.milX.ex ws5.int.milX.ex
10X3131  10X3132  10X3133  10X3134  10X3135
10.0.1%x.131 10.0.1XX.132 100.1XX133  10.0.1XX.134  10.0.1XX.135

int.milX.ex
10.X.3.0/24
VLAN:1XX3

MIL_INT:
military
mission
internal

[Locked Shields 2013 After Action Report]

% cycoN

Kazysg oo

10X5.1/24
10X6.4/2¢ /W

r2ispl.ex

fw.aidX.ex

VLAN: 1XX1 rLisp2.ex

csr.mil{X+1).ex
10.X.102.0/24

10x.1021/24

o\

10.x.108.1/24

VLAN:1XX2
BlueX Aid Organizations’ Networks

aidX.ex
g& QQ EJ} 10.X.108.0/24

dns.aidX.ex mail.aidX.ex  db.aidX.ex
10.X.108.2 10X.108.3 10.X.108.4
100.1XX.82 1001XX83  10.0.1XX.84

W W g @

wwwaidkex  countingaidXex helpaidex chataid.ex
10X.1085 10X1086  10x1087  10X1088
10.0.14¢85 00DUE 1001087 1001058 Al DMZ
wifi.aidX.ex
10.X.109.0/24
wsLwifiaidX.ex ws2.wifi.aidX.ex VLAN:1XX9
10X109.100-199  10X.109.100-199
No Access to BTs No Access to BTs AID_WIFI
Ry int.aidX.ex
Y my N p
e gl N 10.X.104.0/24
deintaidX.ex files.int.aidX.ex VLAN:1XX4
10X.1042 10X104.3

10.0.1XX.42 0.0.1XK.4:

Domain Controller ~ File Server AID_INT: aid internal

wslintaidXex wslintaidX.ex wsd.intaidX.ex wsd.intaidX.ex wsS.int.aidX.ex
10X.104.141 10X.104.142 10.X.104.143 10X.100.144 10.X.104.145
10.0.1%X.141 ).0.1XX.142 0.0.14X.143 100.1X(144  10.0.1XX.14

Locked Shields Gamenet is virtualized
Network conditions can change
Blue Team actions have an impact on the traffic

Red Team can change strategy / configuration



Cross-dataset feature analysis and ranking

Feature computation
Feature elimination

Feature ranking

Feature selection




To start, we compute a large number
of flow-based features

Feature computation = We extract ~80 flow-based features

Feature elimination ,
Metadata Time-related

Feature ranking

Flow duration
Packets / s
Inter arrival time

Flow direction
L3/L4 protocol
Internal / external

Feature selection
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Volume-related

Number of packets
Bytes /s
Packet size



We remove features that do not
provide additional information

Feature computation = Remove constant features

= Remove highly correlated features
Feature elimination

Remove features with a low RMI (i.e., features that do not contain

Feature ranking information about the label)

Feature selection
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We rank features through
recursive feature elimination

Feature computation

Feature elimination

Feature ranking

Feature selection
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\

Train a random forest
classifier with all features

Compute the importance
of each feature

Remove the feature with the

lowest importance score

Y

Feature X
Features in increasing Feature Y
order of importance Feature Z




We focus on time-independent features because
they are less affected by the environment

Average rank Rank in Rankin | Rankin | Rankin
9 LS17A LS18A LS19A LS21A

Init Fwd Win Byts 2 1 18 4 1

Feature computation

Pkt Len Max
Feature elimination

Fwd Pkt Len Max 3 7 10 9 4

Feature ranking Bwd Pkt Len Std 4 4 17 8 6

Pkt Len Var 5 2 11 17 7

Feature selection Bwd Pkt Len Max 6 18 14 1 8

Fwd Pkt Len Std 7 3 13 20 10
Pkt Len Mean 8 13 5 15 13
Bwd Header Len 9 9 4 12 23

Init Bwd Win Byts 10 10 19 7 12
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We developed two types of models

o’

Flow-based models
Goal is to detect malicious flows

Random forest model
with 10 or 20 features

Trained on datasets

& cycon

Host-based models
Goal is to identify infected hosts

Classification using
the flow-based model
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We trained models with the top
10 or 20 (time-independent) features

Training - Generic, 10 Feat.
data
Generic, 10 t.-i. Feat.
Generic, 20 Feat.

Generic, 20 t.-i. Feat.
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We evaluate the models
on all available datasets

Test data

Ls17 Y Ls18[¥ s19ly s21f¥ s21fE)

Training - Generic, 10 Feat.
data

Generic, 10 t.-i. Feat.

Generic, 20 Feat.

Generic, 20 t.-i. Feat.
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The models generally perform well
on data of Country A

Test data
Ls17 Y Ls18[¥ s19ly s21f¥ s21fE)
g;?ining Generic, 10 Feat.  |0.980 0.991 0.975
) Generic, 10 t.-i. Feat. |0.985 0.992 0.971
Generic, 20 Feat. 0.991 0.992 0.967
Generic, 20 t.-i. Feat. |0.992 0.993 0.989
F1 score
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The models do not perform well
on data of Country B

Test data
Ls17 Y Ls18[¥ s19ly s21f¥ s21fE)
g;?;ning Generic, 10 Feat.  |0.980 0.991 0.975
Generic, 10 t.-i. Feat. |0.985 0.992 0.971
Generic, 20 Feat. 0.991 0.992 0.967
Generic, 20 t.-i. Feat. |0.992 0.993 0.989
F1 score
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The host-based model identifies
compromised hosts

Detection Rate (%) 1001
(probability that a -
host is reported as 80
infected if it is -
infected) 60-
40-
201
0

1 5 10 100
Classify a host as infected after X malicious flows
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Reporting a host as compromised
after 1 flow is prone to errors

Detection Rate (%)
(probability that a
host is reported as
infected if it is
infected)
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1001
80:
60
40
20

0_

—

1 5 10 100
Classify a host as infected after X malicious flows
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LS17
LS18
LS19
LS21A
LS21B



Waiting for multiple malicious flows
makes the detection more robust

Detection Rate (%)
(probability that a
host is reported as
infected if it is
infected)
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80:
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1 5 10 100
Classify a host as infected after X malicious flows
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LS19
LS21A
LS21B



Waiting for multiple malicious flows
makes the detection more robust

Detection Rate (%)
(probability that a
host is reported as
infected if it is
infected)
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Waiting for multiple malicious flows
makes the detection more robust

Detection Rate (%)
(probability that a
host is reported as
infected if it is
infected)
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Robust traffic classification across multiple
environments remains challenging
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Recently published work shows that many
models classify based on the "background”

Automatically generated explanations of ML
models show problems in the datasets

Example: VPN vs. Non-VPN classification based
on three bytes (that have nothing to do with VPN or

Non-VPN traffic):

True Bao <17 False
Ba7 <251

1% —

Non VPN

Figure 2: Decision tree for 1D-CNN model. The percentage of
samples that follow each branch is presented above each node.

Line widths are proportional to the percentage of samples.
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Al/ML for Network Security: The Emperor has no Clothes

https://trusteeml.github.io/

Arthur S. Jacobs Roman Beltiukov Walter Willinger
UFRGS, Brazil UCSB, USA NIKSUN Inc., USA
asjacobs @inf.ufrgs.br rbeltivkov @ucsb.edu wwillinger @niksun.com
Ronaldo A. Ferreira Arpit Gupta Lisandro Z. Granville
UFMS, Brazil UCSB, USA UFRGS, Brazil
raf@facom.ufms.br arpitgupta@ucsb.edu granville@inf.ufrgs.br
ABSTRACT KEYWORDS

Several recent research efforts have proposed Machine Learning
(ML)-based solutions that can detect complex patterns in network
traffic for a wide range of network security problems. However,
without understanding how these black-box models are making their
decisions, network operators are reluctant to trust and deploy them
in their production settings. One key reason for this reluctance is that
these models are prone to the problem of underspecification, defined
here as the failure to specify a model in adequate detail. Not unique
to the network security domain, this problem manifests itself in ML
models that exhibit unexpectedly poor behavior when deployed in
real-world settings and has prompted growing interest in developing
interpretable ML solutions (e.g.. decision trees) for “explaining” to
humans how a given black-box model makes its decisions. However,
synthesizing such explainable models that capture a given black-box
model’s decisions with high fidelity while also being practical (i.e.,
small enough in size for humans to comprehend) is challenging.

In this paper, we focus on synthesizing high-fidelity and low-
complexity decision trees to help network operators determine if
their ML models suffer from the problem of underspecification. To
this end, we present TRUSTEE, a framework that takes an existing
ML model and training dataset as input and generates a high-fidelity,
easy-to-interpret decision tree and associated trust report as out-
put. Using published ML models that are fully reproducible, we
show how practitioners can use TRUSTEE to identify three com-
mon instances of model underspecification; i.e., evidence of shortcut
learning, presence of spurious correlations, and vulnerability to out-
of-distribution samples.

CCS CONCEPTS
* Networks — Network security: * Computing methodologies —
Machine learning; « Security and privacy;

ACM Reference Format:

Network Security: Artificial Intelligence: Machine Learning: Ex-
plainability; Interpretability: Trust;

1 INTRODUCTION

In the last few years, we have witnessed a growing tension in the
network-security community. Recent research has demonstrated the
benefits of Artificial Intelligence (AI) and Machine Learning (ML)
models over simpler rule-based heuristics in identifying complex net-
work traffic patterns for a wide range of network security problems
(see recent survey articles such as [9, 46, 55, 62]). At the same time,
we have seen reluctance among network security researchers and
practitioners when it comes to adopting these ML-based research
artifacts in production settings (e.g., see [2, 4, 58]). The black-box
nature of most of these proposed solutions is the primary reason for
this cautionary attitude and overall hesitance. More concretely, the
inability to explain how and why these models make their decisions
renders them a hard sell compared to existing simpler but typically
less effective rule-based approaches.

This tension is not unique to network security problems but ap-
plies more generally to any learning models, especially when their
decision-making can have serious societal implications (e.g., health-
care, credit rating, job applications, and criminal justice system).
At the same time, this basic tension has also driven recent efforts
to “crack open” the black-box learning models, explaining why and
how they make their decisions (e.g.. “interpretable ML" [51]. “ex-
plainable AI (XAI)” [59]. and “trustworthy AI” [12]). However. to
ensure that these efforts are of practical use in particular applica-
tion domains of AI/ML such as network security is challenging and
requires further qualifying notions such as (model) interpretability
or trust (in a model) [40] and also demands solving a number of
fundamental research problems in these new areas of AI/ML.

In this paper, we first provide such a qualification that is motivated

hv the neade of the ficld of netwnrk cecrimrmiv ac annlication domain



Directions for future research

Better datasets
Better features

Better models

Understand limitations




Directions for future research

= Today: hard (or impossible) to distinguish between malicious activities
Better datasets and “background’

= |Large synthetic datasets would allow to learn the actual characteristics of
Better features malicious traffic

Missing labels (attack traffic that is marked as normal traffic) might

Better models confuse a model

* Virtual environments are not representative w.r.t. many features

Understand limitations
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Directions for future research

= Currently, the focus in on flow-based features. But other abstractions would

Better datasets provide additional information.
» For example: Host-based features to capture periodic connections to CnC
Better features server

Better models

Understand limitations
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Directions for future research

= Qur focus was on random forest models (as in previous work)
Better datasets _
= Other types of models might perform better

= But main limitation is likely the amount/quality of the datasets
Better features

Better models

Understand limitations
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Directions for future research

= Currently, we assume that the attackers do not try to circumvent our model
Better datasets

= Realistically, attackers would adapt their behavior depending on the defense

tools
Foawe | weragorank.
1

Pkt Len Max

Better features = Many features can be manipulated

in order to conceal malicious traffic

Better models Init Fwd Win Byts

Fwd Pkt Len Max

Understand limitations Bwd Pkt Len Std

Pkt Len Var

Bwd Pkt Len Max
Fwd Pkt Len Std
Pkt Len Mean

2
3
4
5
6
7
8
9

Bwd Header Len

/’§ nit Bw in
tc/j CYCON Init Bwd Win Byts

—
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Thank you for your attention

Background Baseline Results Outlook

Approach
Evaluation of Future research
our models directions

Towards more
robust models

The Locked Shields Does existing work
exercise generalize?
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