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Defeating and Improving Network 
Flow Classifiers Through 
Adversarial Machine Learning

Abstract: Recent work has shown that machine learning models can be vulnerable to 
an adversary crafting targeted inputs designed to cause mispredictions. This is critical 
in security-related applications such as network intrusion detection systems. While 
past attacks such as mimicry or gradient-based attacks are able to efficiently generate 
adversarial examples, they require potentially large input modifications, which is not 
effective at defeating network flow classifiers.

In this work, we show that small modifications to the input (e.g., the traffic that the 
attacker generates) are enough to manipulate the outcome of a classifier. We focus 
on minimally evasive adversarial examples to defeat tree-ensemble-based network 
flow classifiers. We develop an attack that builds on a previous attack introduced 
by Kantchelian et al. in 2016, which formulates evasion for tree ensembles as a 
Mixed Integer Linear Program, and which we extend by supporting discrete and 
categorical features, implementing per-feature evasion costs and modeling inter-
feature dependencies. This makes our attack more applicable to the network flow 
classification problem, which typically uses diverse and interdependent input features.

We demonstrate our attack on the network flow classifier developed by Känzig et al. 
in 2019, which was trained to detect command and control (C&C) channels in the 
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1. INTRODUCTION

Machine learning (ML) algorithms are being applied to an ever-growing number of 
security-sensitive domains, such as malware detection or network intrusion detection 
[1]–[3]. These algorithms have proven capable of finding novel patterns and handling 
amounts of data that are not processable by humans, which is very beneficial in data-
intensive applications. For instance, network intrusion detection systems (NIDS) 
protect networks by monitoring traffic and detecting anomalous behavior. Traditionally, 
these systems relied on experts developing a set of rules that encode known malicious 
behavior. However, with networks growing larger and more heterogeneous and 
network traffic showing higher variability and much larger volume, this approach is 
becoming increasingly challenging. Furthermore, this approach is unable to discover 
previously unknown attacks and is limited by the fact that most network traffic today 
is encrypted. For these reasons, researchers have proposed ML-based NIDS and have 
shown these to be capable of quickly and accurately identifying malicious behavior 
[1], [4], [5].

However, security-sensitive domains have an intrinsically adversarial nature, 
with adversaries actively trying to bypass any protective measures that have been 
put in place. Recent work on adversarial machine learning suggests that many 
learning algorithms are vulnerable to input perturbations. Such perturbations can 
happen randomly (e.g., because the environment changed) and lead to significantly 
degraded classification performance, as shown by Gehri et al. [6]. However, such 
perturbations can also happen because an adversary deliberately introduces them to 
cause mispredictions [7]–[10].

Successful attacks on security-sensitive ML systems can have disastrous 
consequences. For instance, botnets are one of the most serious threats in today’s 

Locked Shields cyber defense exercise. Our evaluation shows that minor perturbations 
of 1 to 4 flow features suffice to successfully fool the classifier. We further retrain 
the network flow classifier using state-of-the-art adversarial boosting and robust 
decision tree training published by Chen et al. in 2019. For example, using adversarial 
boosting, the resulting robust classifier shows a 62.5% increased median evasion 
distance while achieving equivalent precision and recall on unperturbed samples as 
the original classifier.

Keywords: adversarial machine learning, traffic classification, Locked Shields
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security environment, causing malicious activities such as distributed denial of service 
(DDoS) attacks. Successfully defending against botnets requires efficient and accurate 
detection of botnet traffic, which is made challenging because of the obfuscation and 
resilience techniques employed by attackers. ML-based botnet detection systems are 
thus becoming increasingly popular and have proven to perform well in correctly 
labeling botnet communication [1], [2].

In this work, we focus on defeating and improving a tree-ensemble-based network 
flow classifier developed by Känzig et al. [1] that was trained for command and 
control (C&C) flow classification. In order to evaluate the classifier’s robustness in an 
adversarial setting, we adopt the role of an attacker trying to evade the flow classifier 
to examine how a C&C flow needs to be modified if the classifier is not to label the 
resulting flow as malicious. Past approaches have focused on mimicking a known 
benign sample [11], [12], which requires potentially large adversarial modifications, 
leading to suboptimal malicious behavior. Instead of taking this approach, we focus 
on optimal evasion, i.e., finding the minimal adversarial modification needed to evade 
the classifier. This approach leads to optimal behavior for the attacker and allows 
for making exact guarantees of the classifier’s robustness. We leverage an existing 
adversarial attack [7] and extend this to the network intrusion detection domain. We 
then apply our attack to Känzig et al.’s [1] network flow classifier and show that minor 
perturbations of 1 to 4 flow features suffice to successfully evade the classifier. Finally, 
we improve the flow classifier by applying state-of-the-art adversarial defenses.

The paper is organized as follows: Section 2 describes the background to the work 
described in this paper. Section 3 summarizes related work. Section 4 presents the 
design of our attack framework. Section 5 details the results of the evaluation. In 
Section 6, we conclude and discuss future research directions.

2. BACKGROUND

In this section, we briefly introduce the background to the work described in this 
paper.

A. Decision Tree Ensemble
A decision tree consists of nodes, where each leaf node holds a prediction score, 
and each non-leaf node holds a logical decision rule on a given input feature and 
has two outgoing edges that are labeled true and false, indicating the decision path 
depending on the rule evaluation for an input sample x. When given an input sample, 
the prediction value is found by walking the tree from root to leaf such that an edge is 
in the decision path if and only if the associated decision rule evaluates to true for the 
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input sample. For instance, consider the simple decision tree in Figure 1 and a sample 
� = (7,2). The decision rule �0 ≤ 4 evaluates to false and �1 ≤ 8 to true, thus the 
active leaf for sample � is leaf ��. A decision tree ensemble consists of a set of decision 
trees, where its prediction is an aggregation of the predictions of each active leaf in 
each individual tree in the ensemble.

Since decision trees naturally encode human-interpretable decision rules, a key 
advantage of tree-based learning algorithms is interpretability. Tree ensemble 
classifiers are widely used in practice, especially in the security domain, where they 
have been shown to be superior compared to other learning algorithms, such as 
support vector machines (SVM) and neural networks [1], [2].

FIGURE 1: AN EXAMPLE OF A SIMPLE DECISION TREE AND ITS FEATURE SPACE PARTITION. LEAF 
�� WOULD BE ACTIVE FOR SAMPLE � = (7,2)

B. Network Traffic Classification
Network traffic consists of bidirectional flows, whereby the term flow refers to a set 
of packets that are sent from a source to a destination and that share a common set of 
properties. Most commonly, a flow is defined by its 5-tuple (source and destination IP 
addresses and transport-layer ports and the transport-layer protocol).

In order to classify network flows, one has to extract a representative set of features. 
The most commonly used features are statistical flow features (e.g., the average packet 
size), which can be extracted from packet traces.

C. Mixed Integer Linear Programming
A mixed integer linear programming (MILP) problem deals with a mathematical 
optimization problem that consists of solely linear functions and a finite set of discrete 
or continuous variables. A MILP problem consists of an objective, a set of constraints 
and a set of variables, where the optimal solution optimizes the objective while 
fulfilling the set of constraints.
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Since most problems cannot be translated directly into an objective function and a 
set of constraints, solving a problem using MILP requires a careful modeling and 
translation process. Once the problem has been modeled into a MILP formulation, a 
global optimum can be found through the use of an efficient solver.

D. Locked Shields
Locked Shields is a complex international cyber defense exercise organized annually 
by the NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE) in 
Tallinn, Estonia [13]. Locked Shields focuses on realistic scenarios and simulates 
the full complexity of a large-scale cyber incident, including regular business IT, 
critical infrastructure, military systems, strategic decision-making, and legal and 
communication aspects. The exact scenario varies from year to year, but the exercise 
is generally organized as a real-time Red team vs. Blue team exercise in which the 
Blue teams are the training audience.

E. The Target Classifier
The classifier we analyze in this paper was developed by Känzig et al. [1] and is 
designed to quickly and reliably identify C&C channels in the setting illustrated in 
Figure 2. It uses a random forest classifier with 128 trees of maximum tree depth 10, 
was trained on data from the Locked Shields exercises from 2017 and 2018, and uses 
the 10 or 20 most important features (depending on the classifier version) listed in 
Table I. In the following, top10 and top20 will refer to classifiers that were trained on 
the 10 or 20 most important features, respectively.

FIGURE 2: NETWORK APPLICATION DOMAIN WITH THE DEPLOYED FLOW CLASSIFIER AS LIVE 
DEFENSE AGAINST A BOTMASTER THAT COMMUNICATES WITH INFECTED ENDHOSTS VIA A C&C 
CHANNEL
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TABLE I: FEATURES ON WHICH THE TARGET FLOW CLASSIFIERS ARE TRAINED. THE TOP10 AND 
TOP20 CLASSIFIERS ARE TRAINED ON FEATURES 1–10 AND 1–20, RESPECTIVELY. Bwd INDICATES 
TRAFFIC FROM THE C&C SERVER DESTINED FOR AN INFECTED ENDHOST

ID Feature name Description

1 Protocol The transport layer protocol

2 dstIntExt Internal or external dstIP

3 Active Mean Mean time a flow was active before becoming idle

4 Init Fwd Win Byts Total number of bytes sent in the initial window in the forward direction

5 FIN Flag Cnt Number of packets with FIN

6 Bwd Pkt Len Min Minimum size of packet in the backward direction

7 Flow Pkt/s Number of flow packets per second

8 Fwd IAT Max Maximum time between two packets sent in the forward direction

9 Flow IAT Mean Mean time between two packets sent in the flow

10 Subflow Fwd Pkts The average number of packets in a subflow in the forward direction

11 Flow IAT Max Maximum time between two packets sent in the flow

12 Fwd IAT Tot Total time between two packets sent in the forward direction

13 Subflow Bwd Pkts The average number of packets in a subflow in the backward direction

14 Subflow Fwd Byts The average number of bytes in a sub flow in the forward direction

15 Bwd Header Len Total bytes used for headers in the backward direction

16 Tot Bwd Pkts Total packets in the backward direction

17 Fwd Pkt Len Std Standard deviation size of packet in the forward direction

18 Fwd Seg Size Min Minimum segment size observed in the forward direction

19 Bwd Pkt Len Std Standard deviation size of packet in the backward direction

20 Bwd IAT Mean Mean time between two packets sent in the backward direction
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3. RELATED WORK

There is a large body of work applying machine learning algorithms to network 
intrusion detection. Existing approaches use algorithms such as support vector 
machines (SVM) [14], k-nearest neighbors [15], neural networks [16]–[18], or 
decision trees [1], [5], [19].

Several recent works have investigated the robustness of machine learning algorithms 
towards adversarial examples, which are targeted perturbations of an original sample 
that change the prediction of a model [7], [9], [10], [20]. Such adversarial attacks 
have shown that, generally, small targeted perturbations suffice to fool a model. 
Meanwhile, various adversarial defenses have been proposed that attempt to defend 
against adversarial examples by incorporating them during training [7], [8], [21].

In our work, we extend an existing adversarial attack [7] to the network intrusion 
detection setting and apply it to a tree-ensemble-based network flow classifier 
[1]. Further to that, we use adversarial training [7], [8] to improve the adversarial 
robustness of the flow classifier.

4. ATTACK FRAMEWORK

We now provide an overview of our attack framework and explain the relevant 
technical details. While our attack framework is designed for the network intrusion 
detection problem, the framework is generic and can also be applied to machine 
learning systems in other domains.

A. Overview
Our attack implements an automatic, end-to-end evasion framework, meaning that 
given an initial set of samples and a target tree-ensemble classifier, the system runs 
an optimal evasion attack for every sample and returns the adversarial samples. We 
designed our attack framework for the C&C channel evasion scenario. This scenario 
consists of a botmaster that tries to spread commands to infected endhosts inside a 
network that is protected by the target classifier. The botmaster’s goal is to minimally 
adjust its network flows so that the classifier does not label them as malicious. In order 
to give strong security guarantees, we assume that the attacker has white-box access 
to the classifier. However, we assume that the attacker cannot modify the classifier’s 
training.

Our attack framework is illustrated in Figure 3. The system first performs any 
necessary preprocessing on the raw flow data, which gives the input data X. The 
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evasion framework then receives both the input data X and a configuration that defines 
the feature space of X as well as feature constraints and costs. The evasion framework 
then runs the attack on X, receiving an adversarial sample for each input sample. 
The attack needs to first initialize by parsing the target classifier and translating its 
structure into a MILP problem. By constructing an evasion framework around the 
attack that passes a set of input samples X, we avoid having to repeatedly perform this 
translation, which makes the attack more efficient and, thus, more realistic for use in 
real network environments.

FIGURE 3: ATTACK FRAMEWORK

B. Attack
In abstract, the problem of evading a classifier can be described as follows: Given a 
classification algorithm 𝑓: 𝒳→ 𝒴 and an input � ∊ 𝒳 with 𝑦 = 𝑓(�), we want to find 
an adversarial input �ˊ ∊ 𝒳 that is assigned class 𝑦ˊ =   𝑓(�ˊ) ≠ 𝑦. Finding any input 
�ˊ that is classified differently than the initial sample � is generally trivial and not 
particularly useful to the attacker. Therefore, what we want to find is an adversarial 
input �ˊ = � + 𝛿 such that 𝛿 is minimized (cf. illustration in Figure 4).

FIGURE 4: EVASION OF AN INITIAL INPUT � ∊ 𝒳 FOR A CLASSIFICATION ALGORITHM 𝑓: 𝒳→ 𝒴
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The attack we use in our work is based on the tree ensemble attack by Kantchelian et 
al. [7], which minimizes a loss function 

While Kantchelian et al. propose to use any ��-norm 
  as their loss function, we 

generalize this loss function with a linear adversarial cost function [22]. This allows 
us to model the cost of adapting a network flow feature on a per-feature base by 
specifying a linear factor  for each feature . Moreover, we are 
further able to capture immutable features by setting . Our new proposed loss 
function ℒ for the adversarial attack is then given as:

and

Feature Constraints: Finding an adversarial input �ˊ according to the problem 
statement given above would require that every feature  could be 
modified independently; however, it is overly optimistic to assume that this can 
be done. In domains such as network intrusion detection, features typically have 
dependencies on each other. For instance, consider the FIN Flag Cnt and Protocol 
features of the target classifier. The FIN Flag Cnt feature can be 0 or 1 for TCP but 
has to be 0 for UDP since UDP does not have FIN flags. Thus, an adversarial sample 
that modifies FIN Flag Cnt from 0 to 1 for a UDP flow does not correctly model the 
given feature dependencies, and the botmaster will not be able to send a network flow 
that corresponds to the computed adversarial sample. Furthermore, feature constraints 
give the attacker more precise control over the adversarial flow since any custom 
constraints can be specified.

In order to model potentially complex feature constraints, we propose two types of 
constraints that can be imposed on the input features.

Simple constraints model any feature constraint of the form:

Where  is a binary operator , and  is any threshold on feature . 
This constraint forces feature  of the evasion sample to take a value for which   
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evaluates to true. This allows us to model simple specifications on the evasion sample, 
such as constraining an evasion sample to have UDP as its protocol.

Dependent constraints model any implication feature constraint of the form:

Where  are binary operators , and  are any thresholds on 
features , respectively. This constraint enforces that if  evaluates to true 
for feature   of the evasion sample , then  must evaluate to true for feature  
of the evasion sample . This allows us to model inter-feature dependencies, such as 
enforcing that if the evasion sample has Protocol UDP, then FIN Flag Cnt has to be 0.

Furthermore, each constraint can either be global or per sample. Global constraints 
are applied once when initializing the attack framework. Per-sample constraints are 
applied and removed for every input sample, which allows unique constraints to be 
specified for every sample � ∊ 𝒳.

C. Adversarial Training
In Section 5, we show that our attack on C&C classifiers is able to efficiently find 
adversarial samples, which can be used by a botmaster to send commands to infected 
endhosts without getting detected by the C&C classifier. Following these findings, we 
will show that the classifier’s robustness can be improved by using state-of-the-art 
adversarial training methods. First, we use the adversarial boosting method proposed 
by Kantchelian et al. [7], which efficiently generates adversarial samples that can 
be incorporated when training the classifier. Further to that, we use robust decision 
tree training [8] in order to build a robust boosting tree classifier based on the model 
parameters of the initial classifier.

5. RESULTS

We evaluate our attack on four different versions of the target classifier, where the 
classifiers were trained on data from Locked Shields 2017 and 2018 (from here on 
referred to as LS17 and LS18) and on top10 and top20, respectively. We instantiate the 
attack with the ℒ¹ loss and analyze for each adversarial input �ˊ = � + 𝛿 the required 
adversarial perturbation |𝛿‌‌|1 and the susceptibility of each feature—i.e., how often 
a certain feature is adapted in order to evade the classifier. Further to that, we use 
the following fixed dependent feature constraints to model the feature dependency 
between the Protocol feature and the FIN Flag Cnt and the Init Fwd Win Byts features.
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•	  : UDP does not have FIN flags
•	  : UDP does not have an initial TCP 

window size. Flowmeter sets the Init Fwd Win Byts feature to -1 for UDP 
flows

Note that, due to these constraints, the optimal evasion attack rarely modifies the 
Protocol feature, even though we set the evasion cost of the Protocol feature to 1. Due 
to the feature dependencies of the Protocol feature, changing the protocol requires 
modifying the Init Fwd Win Byts feature, which results in large evasion distances.

Finally, all optimal evasion attacks were executed on a server with 10 Intel Xeon E5-
2699 v3 cores at 2.30 GHz and 16 GB of RAM, and we used Gurobi [23] as a MILP 
solver.

A. Flow Classifier Evasion
We first show the results for running our attack on all four considered classifier 
versions. For each evaluation, we run our attack on 1,000 samples and show the ℓ1 
evasion distances and the number of features that had to be modified. Figure 5b.1 
shows that for the top10 classifiers, modifying one feature suffices to successfully 
evade the classifier in almost all cases. Table II shows that for the LS17 classifier, 
the most commonly modified feature is the Init Fwd Win Byts feature and that it must 
be decreased by 154 bytes on average. This is a minor modification, considering 
that the initial TCP window byte size lies in the region of [0.65535]. For the LS18 
classifier, the most frequently modified feature is the Subflow Fwd Pkts feature, and 
we see that if this feature is modified, the number of subflow packets in the forward 
direction must be decreased by 9 packets on average. One could argue that sending 
fewer packets per flow is a more restrictive modification since the botmaster might 
need a minimum amount of information transmitted. However, this can be addressed 
by opening multiple flows and sending fewer packets per flow.

For the top20 classifiers, when we look at Table III and Figure 5b.2, we see similarly 
that a small subset of features is particularly susceptible. Compared to the top10 
classifiers, the median number of modified features is larger for the top20 classifiers, 
namely 2 (LS17) and 4 (LS18)—this is as expected since the top20 classifiers use 
double the number of features. The most frequently modified features are Tot Bwd Pkts, 
Subflow Bwd Pkts, Bwd Header Len, and Subflow Fwd Pkts, which can all be modified 
by the adversary. Table III shows how much a given feature has to be modified in 
order to evade the classifier. For example, considering the two most commonly used 
evasion features, Tot Bwd Pkts and Subflow Bwd Pkts, we see that it suffices to send 
just 2–4 fewer packets to successfully evade the classifier.
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We can thus conclude that an adversary can evade all flow classifiers by modifying 
a small subset of flow features. We further note that the most commonly modified 
features (Init Fwd Win Byts, Subflow Fwd Pkts, Subflow Bwd Pkts, Tot Bwd Pkts, and 
Bwd Header Len) can all be controlled by the adversary exactly.

FIGURE 5: EVASION DISTANCE AND THE NUMBER OF MODIFIED FEATURES WHEN RUNNING 
OUR ADVERSARIAL ATTACK ON 1,000 SAMPLES. IN A.1 AND B.1, THE RESULTS FOR LS17 ARE ON 
THE LEFT-HAND SIDE, AND THE RESULTS FOR LS18 ARE ON THE RIGHT-HAND SIDE

TABLE II: PER-FEATURE EVASION DISTANCES OF THE TOP10 FLOW CLASSIFIERS. THE EVASION 
DISTANCE MEDIAN AND STANDARD DEVIATION ARE ONLY TAKEN ON NON-ZERO EVASION 
DISTANCES DUE TO THE SPARSITY OF THE DATA. FEATURES THAT WERE MODIFIED LESS THAN 
TEN TIMES COMBINED ARE NOT SHOWN

TABLE III: PER-FEATURE EVASION DISTANCES OF THE TOP20 FLOW CLASSIFIERS. THE EVASION 
DISTANCE MEDIAN AND STANDARD DEVIATION ARE TAKEN ONLY ON NON-ZERO EVASION 
DISTANCES DUE TO THE SPARSITY OF THE DATA. FEATURES THAT WERE MODIFIED LESS THAN 
100 TIMES COMBINED ARE NOT SHOWN
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1) Evasion Time
MILP solvers can be computationally expensive, which is a deciding factor with respect 
to the practical relevance of our attack. For instance, considering the Locked Shields 
exercise, an optimal evasion attack that takes several hours or days is not practical 
since the exercise only takes place over a time span of four days. To demonstrate the 
practical relevance of our attack, we analyze the evasion time when using Gurobi 
[23] and PuLP [24]. Figure 6 shows the time to run the attack for a single sample. 
The median evasion time is between 3 and 10 minutes using PuLP and between 1 
and 2 minutes using Gurobi. Thus, while Gurobi solves the optimal evasion problem 
significantly faster, both cases are clearly practical since evasion times in the range of 
several minutes do not pose a major limitation for an attacker.

FIGURE 6: PER-SAMPLE EVASION TIME USING PuLP AND GUROBI AS MILP SOLVER, 500 SAMPLES

2) Adversarial Transferability
Past work [20], [25] suggests that adversarial samples are transferable between 
different models, meaning that an adversarial input created for one classifier has a 
high likelihood of being adversarial for a different classifier too.

We evaluate adversarial transferability by checking whether adversarial samples for 
LS17 classifiers are also adversarial on the respective LS18 classifiers and vice-versa.
As Table IV shows, adversarial samples from our attack are less transferable compared 

(a) PuLP (b) Gurobi
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to other attacks and learning algorithms, such as gradient descent attacks and neural 
networks. This result is expected since our attack is highly targeted, and the minimal 
evasive sample is set right at the decision boundary of the classifier. A slight variation 
in decision boundary can thus push an adversarial sample back into a malicious 
decision region, which in turn gives a true positive classification.

TABLE IV: TRANSFERABILITY OF ADVERSARIAL SAMPLES GENERATED BY THE OPTIMAL 
EVASION ATTACK 

3) Comparing Optimal and Approximate Evasion
In addition to the optimal evasion attack, Kantchelian et al. also propose a faster 
approximate attack. In the following, we compare the adversarial inputs found by 
the approximate and the optimal attack. We run 1,000 evasions for every classifier 
version and limit the number of coordinated descent iterations to 30 in order to break 
exceedingly long coordinate descent searches. The results of these evaluations are 
shown in Table V. If we compare the evasion distances of adversarial inputs found by 
the approximate attack and the optimal attack, we can clearly see that the approximate 
attack finds adversarial inputs that require significantly larger modifications.

B. Adversarial Training
In this section, we use the adversarial training approaches discussed previously to 
train potentially more robust network flow classifiers, and we evaluate the resulting 
classifiers in terms of their classification performance and robustness against our 
attack.

1) Adversarial Boosting
We use adversarial boosting, as proposed by Kantchelian et al., to improve the 
robustness of the target classifiers. If we look at Table V, we see that the approximate 
attack finds adversarial samples with significantly larger perturbations and has a low 
success rate. Therefore, we decided not to use approximate attacks for adversarial 
boosting but instead to use our optimal attack to generate large sets of adversarial 
samples.

In our evaluation, we ran 10 concurrent evasion attacks on the top20 LS17 classifier 
over the course of 17 days, which is the computation time required by the MILP 
solver. This allowed us to generate 20,0152 adversarial samples, which corresponds 
to 16.1% of the number of malicious samples in the Locked Shields 2017 dataset. We 
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then trained the model proposed by Känzig et al. on a combined dataset consisting 
of the original Locked Shields 2017 samples and the generated adversarial samples.
We first evaluated the classification performance of the resulting robust classifier 
on the Locked Shields 2018 dataset. Table VI shows the classification performance 
of the retrained classifier on the LS18 dataset compared to the original classifier. 
Compared to the original top20 LS17 classifier by Känzig et al., the robust classifier’s 
classification performance is largely equivalent and even performs slightly better in 
malicious class recall.

We further evaluated the robustness of the retrained classifier using our optimal 
evasion attack. If we look at Figure 7a.1, we see that the median evasion distance for 
the adversarial retrained top20 LS17 classifier is 13.0. This corresponds to a 1.625× 
increase in robustness compared to the original top20 LS17 classifier, which has a 
median evasion distance of 8.0 (see Figure 5a.1). If we look Figure 7a.2, we further 
see that the median number of modified features for the retrained top20 LS17 classifier 
is equal to 2, which is equivalent to the original top20 LS17 classifier.

2) Robust Boosting Tree
We trained a gradient-boosting tree model using the robust tree training framework 
[8] for both the Locked Shields 2017 and 2018 datasets and for the top20 feature sets. 
Once again, we measured the robustness of each trained classifier by performing an 
optimal evasion attack for 1,000 samples and compared this to the robustness of the 
initial classifier.

TABLE V: APPROXIMATE EVASION EVALUATIONS FOR ALL CLASSIFIER VERSIONS. EVASION 
DISTANCE INCREASE REFERS TO THE INCREASE COMPARED TO THE OPTIMAL EVASION DISTANCE 
OF THE RESPECTIVE CLASSIFIERS
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FIGURE 7: EVASION DISTANCE AND THE NUMBER OF MODIFIED FEATURES FOR THE 
ADVERSARIALLY TRAINED CLASSIFIERS. IN FIGURE 7B.2, THE RESULTS FOR LS17 ARE ON THE 
LEFT-HAND SIDE AND THE RESULTS FOR LS18 ARE ON THE RIGHT-HAND SIDE

Table VII shows the classification performance of the robust top20 classifiers compared 
to the original top20 classifiers. We observe that the classification performance for the 
benign class decreases only slightly for both robust classifiers, except for the benign 
precision of the robust top20 LS18 classifier, which increases by 1.5%. For the robust 
LS17 classifier, malicious recall decreases by 42% and all averaged classification 
metrics decrease by roughly 4% compared to the original top20 LS17 classifier. The 
robust LS18 classifier performs 5.7% worse in malicious precision. However, it has an 
11.3% increase in malicious recall, and thus an increase of around 1% for all averaged 
classification metrics, compared to the original top20 LS18 classifier.

We further compare the robustness of the robust classifiers to the original classifiers. 
Figure 7b.1 shows the evasion distance of the robust top20 classifiers. The robust 
top20 LS17 classifier has a median evasion distance of 23.1, which corresponds 
to a 2.89× increase in robustness compared to the original top20 LS17 classifier, 
which has a median evasion distance of 8.0. The robust top20 LS18 classifier has a 
median evasion distance of 21.6, which corresponds to a 1.44× increase in robustness 
compared to the original top20 LS18 classifier, which has a median evasion distance 
of 15.0. If we look at Figure 7b.2, we see that the number of modified features is 2 
for the robust top20 LS17 classifier, which is equivalent to the original top20 LS17 
classifier. The robust top20 LS18 classifier has only 2 modified features per evasion, 
compared to 4 for the original top20 LS18 classifier. Thus, while the evasion distance 
of the robust top20 LS18 classifier does increase, the decreased number of modified 
features per evasion can also be seen as a decrease in robustness.

(a) Adversarial Boosting (b) Robust Boosting Tree
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TABLE VI: CLASSIFICATION PERFORMANCE OF THE ROBUST RETRAINED AND THE ORIGINAL 
KÄNZIG ET AL. TOP20 LS17 CLASSIFIER ON THE LS18 DATASET. BENIGN, MALICIOUS REFERS TO 
NON-C&C AND C&C FLOWS, RESPECTIVELY

TABLE VII: CLASSIFICATION PERFORMANCE OF THE ROBUST RETRAINED AND THE ORIGINAL 
KÄNZIG ET AL. TOP20 FLOW CLASSIFIERS. BENIGN, MALICIOUS REFERS TO NON-C&C AND C&C 
FLOWS, RESPECTIVELY

6. CONCLUSION

In this work, we evaluated the robustness of network intrusion detection classifiers 
by applying an attack to tree-ensemble-based classifiers. We presented an extended 
attack that builds on a previous attack by Kantchelian et al., and we designed an 
attack framework that handles end-to-end evasion of input samples. We showed that 
minor modifications to C&C flows suffice to successfully fool the target classifier 
and observed that most adversarial modifications can be implemented in practice. 
Furthermore, we showed that by using state-of-the-art robust training methods, we 
can increase the robustness of the target classifier.

However, there are limitations and extensions to consider for the future. First, while 
our work shows that minor modifications to the input features suffice to evade the 
target classifier, in practice, the attacker needs to be able to map the adversarial input 
to a network flow. Thus, the attacker needs to send traffic in such a way that the 
target system’s traffic capture and preprocessing actually map the sent network flow 
to the intended adversarial input. While this is straightforward for features such as 
the TCP window size or the number of sent packets, it becomes more difficult for 
timing-based features such as the interarrival time. Thus, a natural extension to our 
work would be to implement a traffic modification system that leverages our attack 
framework to find adversarial inputs and then automatically modifies network traffic 
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to evade the target classifier in real time. Considering our results, the most commonly 
modified features can directly be modified on an endhost; thus, such a system could 
be directly implemented as a local system on the endhost or as a proxy. Another 
possibility would be to implement the system in-network using programmable data 
planes [26]. Second, we use an ��-norm with linear costs as the loss function for our 
attack. However, this loss function does not necessarily reflect an attacker’s effective 
effort to modify a network flow. Consider, for example, the Init Fwd Win Byts feature. 
In our loss function, modifying the Init Fwd Win Byts by 20 bytes incurs twice the 
loss of modifying it by 10 bytes. However, in practice, the attacker’s effort for the 
two modifications is likely very similar. Thus, future work could explore different 
adversarial loss functions that better model an attacker’s effective effort for modifying 
network traffic.

REFERENCES

[1]	 N. Känzig, R. Meier, L. Gambazzi, V. Lenders, and L. Vanbever, “Machine learning-based detection of 
C&C channels with a focus on the Locked Shields cyber defense exercise,” in 2019 11th International 
Conference on Cyber Conflict (CyCon), vol. 900, IEEE, 2019, pp. 1–19.

[2]	 B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E. Brown, and M. Veeraraghavan, “A comparison of 
machine learning approaches to detect botnet traffic,” in 2018 International Joint Conference on Neural 
Networks (IJCNN), IEEE, 2018, pp. 1–8.

[3]	 C. Smutz and A. Stavrou, “Malicious PDF detection using metadata and structural features,” in 
Proceedings of the 28th Annual Computer Security Applications Conference, 2012, pp. 239–248.

[4]	 A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” ACM SIGCOMM 
Computer Communication Review, vol. 34, no. 4, pp. 219–230, 2004.

[5]	 J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based network intrusion detection systems,” 
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 5, 
pp. 649–659, 2008.

[6]	 L. Gehri, R. Meier, D. Hulliger, and V. Lenders, “Towards generalizing machine learning models to detect 
command and control attack traffic,” in 2023 15th International Conference on Cyber Conflict: Meeting 
Reality (CyCon), IEEE, 2023, pp. 253–271.

[7]	 A. Kantchelian, J. D. Tygar, and A. Joseph, “Evasion and hardening of tree ensemble classifiers,” in 
International Conference on Machine Learning, 2016, pp. 2387–2396.

[8]	 H. Chen, H. Zhang, D. Boning, and C.-J. Hsieh, “Robust decision trees against adversarial examples,” 
2019, arXiv:1902.10660.

[9]	 B. Biggio et al., “Evasion attacks against machine learning at test time,” in Joint European Conference on 
Machine Learning and Knowledge Discovery in Databases, Springer, 2013, pp. 387–402.

[10]	 I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” 2014, 
arXiv:1412.6572.

[11]	 P. Laskov et al., “Practical evasion of a learning-based classifier: A case study,” in 2014 IEEE Symposium 
on Security and Privacy, IEEE, 2014, pp. 197–211.

[12]	 D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems,” in Proceedings of the 
9th ACM Conference on Computer and Communications Security, 2002, pp. 255–264.

[13]	 “Locked shields.” CCDCOE. 2020. [Online]. Available: https://ccdcoe.org/exercises/locked-shields/
[14]	 M. S. Pervez and D. M. Farid, “Feature selection and intrusion classification in NSL-LKDD cup 99 dataset 

employing SVMs,” in 8th International Conference on Software, Knowledge, Information Management 
and Applications (SKIMA 2014), IEEE, 2014, pp. 1–6.

[15]	 H. Shapoorifard and P. Shamsinejad, “Intrusion detection using a novel hybrid method incorporating an 
improved KNN,” International Journal of Computer Applications, vol. 173, no. 1, pp. 5–9, 2017.

[16]	 N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network intrusion detection,” 
IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.



121

[17]	 R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying convolutional neural network for network 
intrusion detection,” in 2017 International Conference on Advances in Computing, Communications and 
Informatics (ICACCI), IEEE, 2017, pp. 1222–1228.

[18]	 G. Zhao, C. Zhang, and L. Zheng, “Intrusion detection using deep belief network and probabilistic neural 
network,” in 2017 IEEE International Conference on Computational Science and Engineering (CSE) and 
IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, IEEE, 2017, pp. 
639–642.

[19]	 B. Ingre, A. Yadav, and A. K. Soni, “Decision tree based intrusion detection system for NSL-KDD 
dataset,” in Information and Communication Technology for Intelligent Systems (ICTIS 2017), vol. 2, no. 
2, Springer, 2018, pp. 207–218.

[20]	 C. Szegedy et al., “Intriguing properties of neural networks,” 2013, arXiv:1312.6199.
[21]	 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to 

adversarial attacks,” 2017, arXiv:1706.06083.
[22]	 D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the 11th ACM SIGKDD International 

Conference on Knowledge Discovery in Data Mining, 2005, pp. 641–647.
[23]	 “Gurobi optimizer reference manual,” Gurobi Optimization LLC, 2020. [Online]. Available: http://www.

gurobi.com
[24]	 S. Mitchell, M. OSullivan, and I. Dunning, “PuLP: A linear programming toolkit for Python,” University 

of Auckland, Auckland, New Zealand, 2011.
[25]	 S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial perturbations,” in 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1765–1773.
[26]	 P. Bosshart et al., “P4: Programming protocol-independent packet processors,” ACM SIGCOMM Computer 

Communication Review, vol. 44, no. 3, pp. 87–95, 2014.




