Next Steps in Cyber Blue Team Automation — Leveraging the Power of LLMs

Allard Dijk⁽¹⁾, Roland Meier⁽²⁾, Cosimo Melella⁽³⁾, Mauno Pihelgas⁽⁴⁾, Risto Vaarandi⁽⁴⁾, Vincent Lenders⁽²⁾

28.05.2025

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra armasuisse

(4) **TAL TECH**

Attend - Exhibit - Plan Your Visit - Explore CES - Discover -

4-Door Refrigerator with AI Home and AI Vision Inside 2.0

SIGN UP

Cybercrime Expected To Skyrocket

Estimated annual cost of cybercrime worldwide (in trillion U.S. dollars)

As of Sep. 2023. Data shown is using current exchange rates. Source: Statista Market Insights

Forbes

FORBES > LEADERSHIP > CAREERS

Nearly 4 Million Cybersecurity Jobs Are Vacant: Here's Why You Should Consider Breaking Into This Sector

Jack Kelly Senior Contributor © Jack Kelly covers career growth, job market and workplace trends. Aug 16, 2024, 06:00am EDT

 \times

in

Cybersecurity consistently ranks among the top areas for job growth and demand within the broader ... [+] $\,_{\rm GETTY}$

We developed a framework for an automated Blue Team a couple of years ago

2021 13th International Conference on Cyber Conflict Going Viral T. Jančárková, L. Lindström, G. Visky, P. Zotz (Eds.) 2021 © NATO CCDCOE Publications, Tallinn Permission to make digital or hard copies of this publication for internal use within NATO and for personal or educational use when for non-profit or non-commercial purposes is granted providing that copies bear this notice and a full citation on the first page. Any other reproduction or transmission requires prior written permission by NATO CCDCOE.

Towards an AI-powered Player in Cyber Defence Exercises

Roland Meier

Department of Information Technology and Electrical Engineering ETH Zürich Zürich, Switzerland meierrol@ethz.ch

Kimmo Heinäaro

NATO CCDCOE Tallinn, Estonia kimmo.heinaaro@mil.fi

Vincent Lenders

Science and Technology

Artūrs Lavrenovs NATO CCDCOE Tallinn, Estonia arturs.lavrenovs@ccdcoe.org

Luca Gambazzi

Science and Technology armasuisse Thun, Switzerland luca.gambazzi@armasuisse.ch

How can automation / AI help for cyber defense?

And eventually...

What would it take to have a fully automated Blue Team in a future iteration of Locked Shields?

Automated Blue Team framework overview

In the meantime, the framework is implemented and we continuously extend it

Locked Shields is the largest live-fire global cyber defense exercise

Picture: NATO CCDCOE

11:30:42

O CCDCOR

Locked Shields is the largest live-fire global cyber defense exercise

Red Team vs. Blue Team exercise
Attackers Defenders
1 Team ~1 Team / country

Locked Shields is the ideal testing ground for AI research

The number of people required in a Blue Team continuously increases

[Smeets, Max. "The role of military cyber exercises: A case study of Locked Shields." CyCon 2022]

We distinguish four levels of AI

Level 3: Super AI

Level 2: General AI

Surpasses human intelligence

Mimics human intelligence

Level 1: Limited-memory narrow AI

Level 0: Reactive narrow AI

"Machine learning"

Signature-based decisions

We distinguish four levels of Al

Level 3: Super Al

Surpasses human intelligence

• Level 2 – General AI / Strong AI / Deep AI: Level-2 AI mimics humanlevel intelligence but it does not exist yet. We, therefore, do not consider it in this work.

Level 0: Reactive narrow AI

Signature-based decisions

Only level 0 and level 1 exist today Levels 0 – 2 exist today

Level 3: Super Al

Level 2: General AI

Surpasses human intelligence

Mimics human intelligence

Level 1: Limited-memory narrow AI

Level 0: Reactive narrow AI

"Machine learning"

Signature-based decisions

Generative AI offers many new opportunities

Automated patching

Ticket parsing

Network analysis

Log analysis

Data integration

Generative AI can detect and fix vulnerabilities and misconfigurations

- Misconfigurations in systems remain a critical security risk
- Manual analysis is timeconsuming and error-prone

- **Relevance in Locked Shields**
- Blue Teams must harden many systems quickly

 Analyze large codebases and configurations of diverse applications

Existing approaches

- LLM-driven vulnerability detection (e.g., LProtector)
- Code-generation tools (e.g., GitHub Copilot)

Generative AI can analyze network traffic and detect malicious activities

- Real-time identification of malicious activities in massive traffic volumes is difficult
- Encryption prevents analysis of contents

- **Relevance in Locked Shields**
- Large variety of systems, applications and protocols requires a flexible detection approach

- LLMs can interpret unstructured traffic data
- Transformer models detect malware patterns even with limited data

- Existing approaches
 - Interpreting network protocols similar to natural language
 - RTIDS (transformer-based IDS)

Generative AI can analyze event logs and extract relevant information

- Parsing logs manually is cumbersome
- Log volume is large

Relevance in Locked Shields

 Large variety of systems, applications and protocols requires a flexible log analysis approach

- LLMs infer patterns with few or no examples
- LLMs handle variable and incomplete logs better than static rules

- Automated template extraction
- Summarization of large log collections

Given the above example, find the template for the following messages:

sshd[14331]: Failed none for alice from 10.1.3.3 port 28711 ssh2 sshd[31830]: Failed password for bob from 10.2.5.2 port 26926 ssh2

Answer directly with the template and explain the placeholders.

Template:

sshd[<*>]: Failed <*> for <*> from <*> port <*> ssh2

Explanation of placeholders:

- <*> (first): Represents the process ID, which varies in each log message.
- <*> (second): Represents the authentication method (e.g., "none", "password").

(third): Represents the username attempting to authenticate.

Generative AI can interact with humans through natural language

 Support tickets and user reports require triage and technical translation

Relevance in Locked Shields

Blue teams receive user request and need to respond

- Potential for generative AI

- LLMs can parse natural language, extract key info, and generate actions and responses
- LLMs classify, prioritize, and summarize issues

Existing approaches

GPT-style models integrated into support workflows

Generative AI can generate reports

 Manual incident reporting is labor-intensive

 LLMs can synthesize logs, timelines, and loCs into structured, readable reports

Relevance in Locked Shields

 Blue teams are scored on the quality of various reports Existing approaches

- GPT-based incident summarization (e.g., CYGENT)
- LLMs integrated with logging platforms

Generative AI can efficiently integrate threat intelligence feeds and SIEM systems

Manually correlating threat intelligence with logs is slow

LLMs can automate enrichment, prioritization, and action suggestions in SIEM workflows

Relevance in Locked Shields

LS involves rapidly evolving threats and requires efficient information sharing

Existing approaches

Integration with threat feeds, internal logs, and automated response mechanisms

Generative AI offers many new opportunities

Automated patching

Ticket parsing

Network analysis

Log analysis

Data integration

Everything solved?

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- High-quality, labeled datasets are scarce but critical for training and evaluating models
- LS datasets are a step forward, but real-world variation is still a gap

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- Effective LLM performance relies on carefully crafted prompts
- Automating prompt generation remains a challenge

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- LS and real-world environments consist of a large variety of different systems
- Seamless coordination of sensors, actuators, Al engines, and control logic is challenging

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- LLMs are resource-intensive
- Real-world use-cases might require running LLMs on premise

- Data availability
- Prompt engineering
- Integration complexity
- Computational resources
- Measuring effectiveness

- LLMs may fabricate plausible but incorrect outputs
- Standardized benchmarks and reproducible test environments are lacking
- LS provides a valuable setting, but frequency and scope are limited

What should we do next?

- High-impact use-cases
- Reproducible test environments
- Data collection

- High-impact use-cases
- Reproducible test environments
- Data collection

- Automating support ticket processing
- Generating human-readable reports
- Detecting and fixing misconfigurations
- Combining data for actionable insights

- High-impact use-cases
- Reproducible test environments
- Data collection

- Establish a testing environment that supports frequent, repeatable tests
- Integrate automated attacks as a counterpart to our defense techniques

- High-impact use-cases
- Reproducible test environments
- Data collection

- (Even) more data collection and labeling
- For example in future iterations of Locked Shields and in similar environments

We publish LSPR24, a dataset collected during the partners run of Locked Shields 2024

The dataset contains aggregated features and logs based on

- 400 GB network traffic
- 20 million flows
- 2 billion packets

https://doi.org/10.5281/zenodo.14900873

We publish LSPR24, a dataset collected during the partners run of Locked Shields 2024

The dataset contains aggregated features and logs based on

- 400 GB network traffic
- 20 million flows
- 2 billion packets

Next Steps in Cyber Blue Team Automation — Leveraging the Power of LLMs

Generative AI offers many new possibilities to automate cyber defense

Remaining challenges include limited high-quality data, integration work and the need for benchmarking environments

To foster research, we publish the LSPR24 dataset

Roland Meier roland.meier@ar.admin.ch