
1

Towards an AI-powered Player in
Cyber Defence Exercises

Abstract: Cyber attacks are becoming increasingly frequent, sophisticated, and
stealthy. This makes it harder for cyber defence teams to keep up, forcing them to
automate their defence capabilities in order to improve their reactivity and efficiency.
Therefore, we propose a fully automated cyber defence framework that no longer needs
support from humans to detect and mitigate attacks within a complex infrastructure.
We design our framework based on a real-world case – Locked Shields – the world’s
largest cyber defence exercise. In this exercise, teams have to defend their networked
infrastructure against attacks, while maintaining operational services for their users.
Our framework architecture connects various cyber sensors with network, device,
application, and user actuators through an artificial intelligence (AI)-powered
automated team in order to dynamically secure the cyber environment. To the best
of our knowledge, our framework is the first attempt towards a fully automated cyber
defence team that aims at protecting complex environments from sophisticated attacks.

Keywords: artificial intelligence, automation, Locked Shields, cyber defence, security

Roland Meier
Department of Information Technology
and Electrical Engineering
ETH Zürich
Zürich, Switzerland
meierrol@ethz.ch

Kimmo Heinäaro
NATO CCDCOE
Tallinn, Estonia
kimmo.heinaaro@mil.fi

Vincent Lenders
Science and Technology
armasuisse
Thun, Switzerland
vincent.lenders@armasuisse.ch

Artūrs Lavrenovs
NATO CCDCOE
Tallinn, Estonia
arturs.lavrenovs@ccdcoe.org

Luca Gambazzi
Science and Technology
armasuisse
Thun, Switzerland
luca.gambazzi@armasuisse.ch

2021 13th International Conference on Cyber Conflict
Going Viral
T. Jančárková, L. Lindström, G. Visky, P. Zotz (Eds.)
2021 © NATO CCDCOE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal
use within NATO and for personal or educational use when for non-profit or
non-commercial purposes is granted providing that copies bear this notice
and a full citation on the first page. Any other reproduction or transmission
requires prior written permission by NATO CCDCOE.

2

1. INTRODUCTION

Attackers and defenders of cyber systems often engage in an arms race on many levels:
attacks become more sophisticated, happen at a faster pace, use greater stealth, and
show less evidence. Defenders often lag behind attackers because of the underlying
asymmetry between them needing to defend a heterogeneous infrastructure against
all possible attack vectors and the attackers only needing to find a single or limited
number of vulnerabilities to exploit.

It is widely accepted that a human workforce alone cannot keep up with the workload
in a typical cyber environment. As a consequence, many tools have been developed
to support human defenders: From pattern detection tools [1], [2] to sophisticated
anomaly detection using machine learning [3]–[5]. However, while these tools
significantly reduce the effort required by humans to detect anomalies, they do not
automate the entire defence process and still require significant human labour to
mitigate the impact of attacks and keep services running.

In this paper, we develop a novel framework for fully automated cyber defence. Our
framework is designed for Locked Shields (LS) [6], [7], the world’s largest live-
fire cyber defence exercise but is expected to be applicable to the defence of many
cyber infrastructures. In LS, human teams from different nations have to defend their
networked infrastructure against a series of attacks while maintaining operational
services for several days. In contrast to classical defence teams in LS, which may
consist of large numbers of human players, our framework consists of an AI-powered
system without any human intervention once the exercise has started.

To the best of our knowledge, our framework is the first attempt towards a fully
automated cyber defence team. In particular, our contributions in this paper are:

- A description of the situation during LS for attackers and defenders
(Section 2);

- A framework architecture for an automated team to participate in LS
(Section 3);

- System descriptions of the main components of this framework including
sensors and situational awareness (Section 4), actuators (Section 5), AI
engine (Section 6) and control logic (Section 7); and

- A case study highlighting how our framework is able to mitigate the impact
of attacks in LS (Section 8).

Related Work: A cyber exercise such as LS can be considered as a game with complex
and continuously changing rules. Past developments in AI have resulted in computers

3

outperforming human players in games such as chess and go. Game algorithms have
traditionally been designed for a single game with predefined rules. However, the
authors of [8] also apply AI for learning to play chess without a priori knowing the
rules. AI adapting to the rules of several games to achieve a general game system
has also been studied in [9]. The problem we consider in this work is different as the
attacker does not have to follow a predefined set of moves or rules.

The concept of cyber defence exercises and their importance in training experts and
testing defence processes has been studied in [10]. The use of AI in defending IT
systems has been considered beneficial for years. Already in 2011, Tyugu described
that defending cyberspace cannot be handled by humans due to the speed of processes
and the amount of data involved [11]. Using machine learning to detect malicious
traffic in industrial networks has been studied in [12]. Bogatinov et al. predict that
autonomous AI agents defending IT systems will gradually become better than
humans [13]. On the other hand, there is a constant arms race between defenders and
attackers also in cyberspace. If AI can be used to improve cyber defence, it can also
be used to improve attacks and malware as is studied in [14] and [15].

2. BACKGROUND ON LOCKED SHIELDS

Below, we summarise key aspects of LS: the roles of the different teams, and the
scoring system.

A. Teams and Organisation
The two most important teams concerning this paper are the defenders (blue team)
and the attackers (red team), which we explain in more detail below. Table I provides
an overview of all teams.

TABLE I: TEAMS IN LS.

Team name Role Explanation

Blue Team (BT) Defender Needs to defend its infrastructure against attacks from the
RT while maintaining availability.

Red Team (RT) Attacker Executes attacks against the infrastructure of each
participating Blue Team.

Green Team (GT) Infrastructure
operator

Creates and maintains the technical exercise infrastructure.

Yellow Team (YT) Monitoring Provides situational awareness during the exercise.

User Simulation
Team (UST)

Benign users Legitimate system users with poor cyber hygiene conducting
activities on BT systems.

White Team (WT) Organiser Responsible for non-technical aspects of the exercise.

4

Blue Teams (BTs) are the main training audience. There are more than 20 BTs and
each of them acts independently within its dedicated infrastructure (the Gamenet).
The main tasks of each BT are to harden the provided Gamenet to be available and
resilient before the attacks start and to defend them against ongoing attacks.

The Red Team (RT) conducts attacks to accomplish predefined objectives (e.g. gain
control of a device). The RT is not the training audience, and so its activities are
highly regulated to maximise fairness. The RT has three sub-teams: Web, Client-
side (CS), and Network and special systems (NET + SS). SS consists of all ICS and
cyber-physical systems. The RT knows vulnerabilities in advance and uses a large
toolset to attack. It includes a command and control (C&C) infrastructure, custom,
and known malware. In addition, the RT takes advantage of user(s) to run commands
(e.g. download malware) on Gamenet machines.

BT communication channels with other teams: Besides defending their systems,
the BT is required to maintain predefined communication channels as listed in Table
II.

TABLE II: COMMUNICATION CHANNELS.

B. Scoring
LS has a complex scoring system that changes yearly but the most important high-level
objectives from a BT perspective remain constant: (i) prevent the RT from reaching its
objectives; (ii) keep systems available; and (iii) interact with the UST and YT.

RT objectives: The RT follows a list of objectives it wants to achieve in each phase
of the gameplay. After each phase, the scoring is updated based on the achieved
objectives in each Gamenet.

With Channel Purpose

GT Web ticketing, chat Request manual reverting of SS, receive or request information
about Gamenet status

YT Web interface Provide periodical or on-demand reports, threat reports, key
events, situation reports, adversary assessments

UST Web ticketing Read, address and respond to UST tickets

WT Voice or video call Verify voice or video call functionality in the Gamenet, voice or
video reporting

5

Availability: All systems in the Gamenet need to be available as specified in the rules.
Mistakes by the BT (e.g. over-aggressive firewall rules) or attacks from the RT (e.g.
compromised services) reduce the availability score.

Interactions with UST and YT: The UST continuously accesses systems and services
in the Gamenet. If a service does not work as expected, it creates a support ticket and
the BT needs to solve the issue. Otherwise, it will incur a scoring penalty. In addition,
the YT periodically requests reports about failed and successful attacks from BTs.

3. ABT FRAMEWORK OVERVIEW

We now provide an overview of our framework to implement an automated BT
(ABT). Our framework is designed for LS, but it could easily be adapted to other
environments. In our framework, the skilled human players in a traditional BT are
replaced with an architecture as shown in Figure 1.

FIGURE 1: ARCHITECTURE OVERVIEW

There are five types of building blocks:

- Sensors provide measurements and data;
- Actuators trigger actions;
- The situational awareness database contains all the sensor data, the AI

state and external data (e.g. logs, AI models and malware signatures);
- The AI engine continuously (re-)learns models (e.g. to detect anomalies);
- The control logic determines actions for actuators to execute based on the

available information in the situational awareness database.

6

4. SENSORS AND SITUATIONAL AWARENESS

We now describe how the ABT maintains situational awareness by collecting data
and building models based on these data. We group the sensors in five categories:
application-level, device-level, network-level, user-interaction, and organisational
inputs.

A. Application Sensors
Application state and configuration: This includes for example the contents
of the database, the registry or the filesystem. This allows the ABT to identify
misconfigurations, vulnerable components, weak credentials, unauthorised
modifications, and to restore a compromised application. The application state
can be retrieved at the beginning of the exercises (e.g. for static configurations) or
periodically (e.g. for dynamic state).

B. Device Sensors
System information and logs: For example, process creations, filesystem activities,
patch level, privileged activities, machine fingerprinting, interaction with remote
services, and domain controllers. Besides logs that are collected by default, the ABT
may log additional events and forward them to the situational awareness database.

Remotely executed command outputs: The ABT evaluates and collects the outputs
of commands executed by the actuators on Gamenet devices.

Active monitoring: the ABT deploys sensors to perform on-demand device monitoring
or active probing. This could not be possible on some devices (e.g. SS) because of
resource constraints or because of their proprietary architecture. Monitoring agents
on workstations can allow logging mouse and keyboard inputs interacting with
proprietary GUI applications.

C. Network Sensors
Network traffic: By default, one virtual machine (VM) receives a real-time stream
of packets captured in the Gamenet. The traffic is captured at particular devices in
the network (switches and routers). Therefore, it only contains packets crossing these
devices and can contain the same packet multiple times. To capture additional traffic,
the ABT configures additional sensors, for example by recording traffic at hosts.

Network configuration: To discover the network topology and configuration, the
ABT relies on network scanning, management and diagnostic tools such as nmap,
snmp, or traceroute in addition to the organisational inputs (see below). These sensors

7

allow it to determine the actual behaviour of devices and compare this with the
specifications.

D. User-Interaction Sensors
Support tickets: The UST creates support tickets that indicate problems in the
Gamenet (usually related to availability and functionality). This input is important
for situational awareness because functionality issues are especially hard to detect
automatically.

E. Organisational Inputs
System and credential list: The ABT receives a list of all systems in the Gamenet
and credentials to access them with administrative privileges. The ABT leverages
available remote access services (e.g. SSH, telnet, RDP, and web interfaces) for
situational awareness.

Scoring system and external monitoring: The primary components of the scoring are
objectives accomplished by RT and the availability state of all systems. These inputs
are essential for situational awareness to understand how successful or unsuccessful
actions and attack mitigations have been in near real-time.

F. Situational Awareness Database
The situational awareness database contains all the information that is relevant for
the ABT to succeed. It is a central entity that includes all collected sensor data, any
learned models from the AI engine, actuator output as issued by the control logic, as
well as relevant information from outside the context of LS, such as known software
vulnerabilities or indicators of compromise. The collected and processed data is
stored persistently and made available to the AI engine and the control logic. The
ABT represents the stored data in a global knowledge graph in order to reason about
the current situation including the Gamenet and the previous interactions with all the
other teams.

The data sources are heterogeneous and the data must first be pre-processed and then
fused in order to allow queries over data coming from multiple sources and formats.
For example, a query to the database might correlate data from device and network
sensors in order to identify compromised services that leave attacker traces in both
data sources. Furthermore, it is possible to correlate system failures identified from
support tickets with application state, so that the control logic can derive the services
that may need a restart or a recovery.

8

5. ACTUATORS

We will now describe the actuators at the application, device and network level, as
well as actuators for interacting with humans from other teams.

A. Application-level Actuators
Web application firewall configuration: To block the common attack vectors (e.g.
malicious file uploads), the control logic deploys policies to inspect requests and to
block those which – according to the AI models – are malicious.

Application configuration and patch: Change the configuration of an application,
patching vulnerable libraries, or to update credentials.

B. Device-level Actuators
Remote management: This actuator initially allows the ABT to log in to any device
with administrative privileges. If possible, the ABT installs tools to enable effective
remote management and infrastructure as a code (IaaC). Having multiple options for
remote access improves the ABT’s chances of regaining access after a system was
compromised and allows consistent management of operations on the Gamenet.

Restoring a device’s initial state: The ABT can revert a device to its original state
(resulting in a scoring penalty). VMs can be reverted automatically by the ABT’s
actuators, while some special systems require manual intervention by the GT.

C. Network-level Actuators
Device configuration and rules: To control network traffic, the ABT uses actuators
to dynamically adapt the configuration and the rules of firewalls and routers. Initially,
the devices are set up as simply as possible: firewalls let everything pass and routers
merely guarantee connectivity. The ABT configures these devices to limit authorised
traffic, and – if possible – replaces the software running on them. The actuator can
also apply a new rule to block traffic from or for compromised devices. To gain higher
control over the network traffic, the actuator may also change the routing behaviour
of the devices; for example, to configure the network such that all traffic passes a
programmable controller.

D. User-Interaction Actuators
Chat and email messages: The ABT has to address and respond to messages sent by
other teams. This actuator thus generates human-readable chat and email messages
based on the current situation.

9

Incident reports: The ABT also needs to provide reports about successful and failed
attacks to the GT. This actuator reports about those incidents to the GT.

6. AI ENGINE

The AI engine’s task is to learn models from data and infer facts from historical events
in the Gamenet. It gets its data from the situational awareness database, performs
machine learning techniques, and feeds the learned models and facts back to the
database. Below, we present a categorisation of AI approaches and then sketch how
models are trained.

A. AI Categorisation
We characterise each AI-enabled defence according to three dimensions:

1. Level: How sophisticated is the AI? Example: Narrow AI
2. Tasks: What does the AI do? Example: Classify samples
3. Type: Which AI technique is used? Example: unsupervised learning

The four levels of AI:

• Level 0 – Reactive narrow AI: Level-0 AI is very basic in the sense that
it only reacts to current inputs. This restricts it to simple decisions (e.g. if
a network packet has destination port 22, drop the packet). This level of
automation is the same as many existing tools (e.g. [1], [2], [16], [17]).
For example, popular intrusion detection systems, such as Snort [2],
check network traffic for known signatures, or antivirus software checks
executables against a database of known malware. The contribution of
Level 0 should not be underestimated in our context. Using external sources
(rules, IOC, patterns, etc.), it is possible to identify traces of attacks with few
computational resources.

• Level 1 – Limited-memory narrow AI / Weak AI: Level-1 AI is what
is typically understood as machine learning today (e.g. Siri, Watson, self-
driving cars). Many proposed machine learning solutions [18–26] already
solve tasks that are important for the ABT. This kind of AI is equipped with
data storage and learning capabilities that enable the ABT to use historical
data to make informed decisions.

• Level 2 – General AI / Strong AI / Deep AI: Level-2 AI mimics human-
level intelligence but it does not exist yet. We, therefore, do not consider it
in this work.

10

• Level 3 – Super AI: Level-3 AI is considered self-aware AI that surpasses
human intelligence. It is not entirely clear if this kind of AI can be achieved
and is also out of the scope of our work.

The five tasks for AI we consider useful are:

• Identification/classification: tell me what the thing is, such as detecting
command and control flows (e.g. [18]); Intrusion/anomaly detection (e.g.
[19]–[21]);

• Categorisation: group similar things together such as log clustering for
detecting security issues (e.g. [22]);

• Assessment: tell me whether I should care about this thing, for example, to
prioritise security events (e.g. [23]);

• Recommendation: tell me what to do about this thing in order to, for
example, recommend defence actions (e.g. [24]);

• Prediction: tell me if this thing, for example, predicts attacks or
vulnerabilities (e.g. [25], [26]).

Three types of AI exist:

• Supervised: learning from labelled training data. Supervised approaches
can use the situational awareness data from the current and/or past iterations
of LS for training;

• Unsupervised: detecting previously undetected patterns in unlabelled data,
using, for example, clustering techniques;

• Reinforcement: AI takes decisions and receives feedback which it uses for
future decisions.

B. AI Models for Improved Situational Awareness
Below, we sketch models and applications of the AI engine to improve the situational
awareness of the ABT.

Anomaly detection: The AI engine learns the behaviour of applications, devices,
and network traffic from sensor data in order to build models of normal behaviour
and detect anomalies or intrusions (e.g. an application suddenly deleting many files).
For unsupervised learning, the models are learned based on the actual data while
supervised learning techniques require labelled datasets from previous exercises.

Data fusion: The situational awareness database contains information from many
different sources and the AI engine fuses this information to extract new insights. For
example, a successful defacement attack resulting in support tickets, event log entries,

11

and network connections that seem unsuspicious at first is inferred as an attack by
means of time correlation.

Prioritise defence actions: Often, the ABT has multiple options to restore a system
after a successful attack (e.g. patching or reverting the device) but the options have
different costs and side-effects (e.g. scoring penalty, system availability). The AI
engine therefore models and suggests the best strategy given the information about the
current situation, an objective function (e.g. the scoring rules), or potential previous
observations (reinforcement learning).

Predict future attacks: Since the attacks are similar in each iteration of LS, the AI
engine learns using data from previous iterations to predict which attacks will happen.
Furthermore, predictive models are learned to infer if an observed attack is likely to
be performed against other devices.

Interact with humans: The ABT is required to interact with humans in other teams.
For this, a chatbot based on AI and natural language processing techniques (e.g. [27]–
[30]) is used. The chatbot is able to ask humans about, for example, the classification of
the problem and the target IP address. This information is inserted into the situational
awareness database. If the chatbot is not able to understand or resolve the problem,
the chatbot can ask the user for more information or try to please her with generic
statements to optimise scoring points.

Summary: In Table III, we summarise the tasks of the AI engine at the different
stages of the exercise categorised according to their function.

TABLE III: TASKS FOR AI MODELS

Task

Satge Identification Categorisation Assessment Recommendation Prediction

Initial
hardening

Detect
misconfigurations
between similar
clients

Find groups of
similar devices

Identify
potentially
vulnerable
devices

Generate secure
configurations

Predict events
that could
indicate a
compromise

Monitoring &
Response

Detect malicious
applications/
commands/
network traffic

Detect malicious
patterns in log
files

Prioritise
security events

Select defence /
restore action

Predict future
attacks

Reporting Understand
support tickets

Link support
tickets and
monitoring alerts

Prioritise tickets Formulate
response to ticket

Predict
impact on the
scoring

Recovery Find devices
that need to be
recovered

Find a similar
system as a
template for the
recovery

Determine
whether a
system needs
to be recovered

Select recovery
strategy

Predict
impact on the
scoring

12

7. CONTROL LOGIC

We will now describe the tasks managed by the control logic, first in the initialisation
phase, and then in the gameplay phase. The control logic makes decisions about
whether and which actuators to actuate in which way depending on the information
available in the situational awareness database.

A. Defence Techniques and Goals
The goal is to defend against complex cyber attacks by hardening the system and
maintaining/restoring service availability in order not to lose scoring points. Table IV
provides an overview of the employed defence techniques of the control logic for the
different stages before and during the exercise.

TABLE IV: DEFENCE TECHNIQUES

B. Initial Hardening
Since the Gamenet initially comes in a relatively unprotected state, the first task of the
control logic is to harden the devices, networks and applications based on templates
of secure configurations prepared by humans.

Satge WEB CS NET + SS

Initial
hardening

Set up WAF.
Replace applications with
secure clones.
Security evaluation.

Set up a centralised
management tool.
Deploy antivirus, firewall,
execution policies, monitoring
agents.

Deploy firewall
rules for all networks.
Deploy network IDS/IPS.
Secure interfaces (e.g. of the
ICS devices).

Identify vulnerabilities, patching software and fix misconfigurations.
Change credentials for OS accounts, services and application accounts.
Remove unrequired accounts and services.
Identify and remove RT implants.

Monitoring &
Response

If exploited functionality in
the web application can be
identified after or mid-attack,
disable access to it and
attempt fixing.

Process creation and file access
have to be monitored to identify
and block suspicious activities.
Monitoring tools must also be
closely guarded.

Locate and remove rogue
network connections and rogue
hosts.
If SS is misbehaving, attempt to
identify the cause and deploy
rules to minimise unauthorised
access.

Anomaly detection. If a suspected attack, data exfiltration or C&C channels or processes can be
identified – block the relevant network traffic and terminate processes.

Reporting AReport successful and failed attacks, provide adversary assessment.

Recovery Self-recovery generally
possible by preparing
database and source code
(e.g. scripts) dumps in
advance.

Self-recovery generally not
possible, the automated
reverting interface is available
to the BT.

Self-recovery is not possible
and GT has to take action.

13

General: The control logic replaces all credentials and disables unused services on
all machines. If required, it sends the new credentials to the UST. Operating systems
and software updates are installed. Wherever possible additional security software is
installed (e.g. antivirus solution, monitoring agents).

Workstations: CS consists primarily of Windows workstations and domain
controllers and some Linux or macOS workstations [31], [32]. Workstations are
managed in a centralised manner by utilising group policies. Applying group execution
policies allows us to whitelist known benign applications while blocking unknown
services. Applying group application firewall policies further allows us to restrict the
communications of malicious software that has bypassed execution policies. Initial
policies are defined by learning workstation behaviour at the AI engine before the
attack stage.

ICS devices: Defence involves protecting VMs running engineering workstations and
special software combined with physical components. ICSs require initial configuration
to mitigate basic vulnerabilities. Depending on the services required from the device,
the ABT disables web interfaces or protects them with strong passwords.

Network: The ABT knows which services are running and need to be available at
each of the devices from the organisational inputs, and it can derive firewall rules
which only allow expected traffic. This is especially important in ICS protocols
with no encryption or authentication. If the existing firewalls in the Gamenet are not
enough to perform this action (e.g. because not all traffic crosses them), the control
logic attempts to change the routing behaviour to forward the traffic through a central
controller or a gateway which sees all traffic and can control it (e.g. by means of
modifying or blocking the traffic).

Web applications: Since most of the web traffic is encrypted, it is difficult to filter
on the network or transport layer and a Web Application Firewall (WAF) becomes the
primary defence tool. While a WAF might only protect against basic attack vectors by
default, the AI engine creates a behaviour profile based on data from the monitoring
sensors and UST interactions in order to enable more aggressive filtering while
maintaining functionality. In addition, the AI engine may also reveal vulnerabilities to
the control logic from analysis of the web application source code.

Files: While full-disc imaging or filesystem copying is not possible per exercise
limitations, calculating hashes of the file system tree on all machines is beneficial
for situational awareness. When standard OS file and software hashes are available,
pre-planted backdoors and non-default configurations can be detected at this stage

14

already. For some applications (primarily web), it is possible to create snapshots by
copying files and creating database dumps.

C. Actions during Gameplay
During the LS exercise, the control logic attempts to identify attacks and mitigate
their impact.

Revert and reboot: Quick recovery to a working state can often maintain the
availability score. In simple cases, a reboot restores the functionality of a system. If an
application can be restored from snapshots created by the ABT in the initial hardening
phase, this is preferred as it does not incur a scoring penalty. If this fails, the penalised
in-game revert of VMs is executed (restored state could include vulnerabilities).
More complex systems might require a pre-defined order of reverting and rebooting
multiple targets. SS might require separate interfacing with the GT to request manual
reverting of physical devices.

Block malicious traffic: In addition to the static firewall rules, the control logic
also relies on learned AI models to identify traffic that is associated with malicious
activities and blocks it.

Identify senders of malicious traffic: If the sender or the receiver of malicious traffic
is a device under the ABT’s control, the control logic takes further actions to patch the
device or block it completely.

Block malicious processes: The execution policies might not stop all malicious
processes. Based on each new process’ properties and event logs (or events for
existing ones), the control logic uses learned AI models to determine if the process
should be terminated.

Block malicious application requests: Application (most commonly web) requests
are intercepted for analysis by the AI engine. Those requests identified as malicious
are blocked before being processed.

D. Human Interaction
Report successful and failed attacks: The control logic gathers facts from the
situational awareness database regarding all knowledge it has about attacks detected,
both successful and failed. A chatbot then processes the data and fills in a reporting
template adding polite human conversation as necessary.

Respond to tickets: If the control logic has successfully resolved the reported problem

15

or it has made a promising attempt, the chatbot closes the ticket with a response to
contact again if the problem persists.

8. CASE STUDY

We will now discuss a case study that shows how the different components of the ABT
framework work together to defend against an attack.

During the initial hardening phase, the control logic deploys on all clients an additional
trusted certificate authority (CA) and reconfigures clients to forward client traffic to a
proxy, enabling both plain and encrypted traffic analysis. The control logic configures
sysmon on Windows CS enabling detailed system monitoring. Finally, network
traffic is analysed by the AI engine by extracting features as suggested in [33] from
the situational awareness database and classifying C&C channels using data from
previous LS exercises and random forest classifiers according to Känzig et al. [18].

Now, let us consider a typical case in the early stages of the exercise: the RT fools a
user (UST or trough GT) (i) to download a malicious payload; and (ii) to execute it
on his own client (CS). As soon as the payload is executed, it (iii) contacts the C&C
server and the RT now has a foothold in the Gamenet. This payload could create
persistence in order to be used in later phases of the exercise to perform destructive
actions by the RT.

When the user downloads and executes the payload, there are three events that are
captured in the situational awareness database: (a) from the proxy, the requests to
download a malicious payload which is in this case an executable file (e.g. script,
binary, library); (b) sysmon reports the execution of an unknown payload; (c) the
payload makes contact with its C&C server, which is detected as an anomaly in the
traffic analysis.

The correlation of these three events, interpreted as anomalous and suspicious, triggers
the following responses at actuators by the control logic:

Malicious processes and files are identified and neutralised: the malicious process
on the compromised CS is killed, the payload sent to the situational awareness
analysed, inserted in the blacklist of the proxy (e.g., hash, pattern recognition), and
finally deleted from the CS.

CS hardening is improved: CS software restriction policies are updated (e.g. payload

16

hash, execution path) in order to avoid further execution of this payload on Gamenet
devices.

Network rules updated: identified C&C IPs are blocked on the network firewalls and
further activity to or from these IPs is considered potentially malicious.

Report generation: The control logic generates a human-readable report summarising
the events related to the compromised hosts from the situational awareness database
and sends it via email.

9. CONCLUSION AND OUTLOOK

We have described a novel framework that connects sensors with network, device,
application and user actuators in order to automate the defence of complex cyber
infrastructures against sophisticated attacks. By connecting these components
together through an AI-powered computing system, we can perform automated
mitigating actions to quickly and efficiently combat various attacks upon detection.
Our framework is thus well suited to protect complex infrastructures which need to
maintain service availability against multistage attacks. We have highlighted how our
framework functions in the context of Locked Shields, but the proposed framework is
applicable to other infrastructures that shall maintain high service availability while
under attack. We acknowledge that this paper presents only the framework and its
implementation is outside the scope of the paper. Therefore, as future work, we plan to
implement our architecture in order to compete in upcoming cyber defence exercises
and to compare its performance with human teams. We hope that our work will also
inspire other researchers in implementing similar automated cyber defence teams so
that these systems could eventually compete and learn from each other.

ACKNOWLEDGEMENTS

We thank the Swiss Blue Team for sharing their data and expertise with us and the
anonymous reviewers for their valuable feedback.

REFERENCES

[1] “Zeek.” https://zeek.org/
[2] “Snort.” https://www.snort.org/
[3] H. Alqahtani, I. H. Sarker, A. Kalim, S. Md. Minhaz Hossain, S. Ikhlaq, and S. Hossain, “Cyber Intrusion

Detection Using Machine Learning Classification Techniques,” in Computing Science, Communication and
Security, Singapore, Jul. 2020, doi: 10.1007/978-981-15-6648-6_10.

17

[4] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning Methods for Cyber
Security Intrusion Detection,” IEEE Commun. Surv. Tutor., vol. 18, no. 2, 2016, doi: 10.1109/
COMST.2015.2494502.

[5] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, “A Survey on Security Threats and Defensive
Techniques of Machine Learning: A Data Driven View,” IEEE Access, vol. 6, 2018, doi: 10.1109/
ACCESS.2018.2805680.

[6] “Locked Shields.” https://ccdcoe.org/exercises/locked-shields/
[7] K. Kasak, “Lessons learned from Locked Shields 2013 exercise,” in 2nd ENISA Int. Conf. on Cyb.

Coop. and Ex., Ath., Greece, 2013. [Online]. Available: https://www.enisa.europa.eu/events/2nd-enisa-
conference/presentations/kaur-kasak-nato-ccdcoe-lessons-learned-from-the.pdf

[8] O. E. David, N. S. Netanyahu, and L. Wolf, “DeepChess: End-to-End Deep Neural Network for Automatic
Learning in Chess,” in ICANN 2016, 2016, doi: 10.1007/978-3-319-44781-0_11.

[9] D. Silver et al., “A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play,” Science, vol. 362, no. 6419, 2018, doi: 10.1126/science.aar6404.

[10] E. Seker and H. H. Ozbenli, “The Concept of Cyber Defence Exercises (CDX): Planning, Execution,
Evaluation,” presented at Int. Conf. on Cyb. Sec. and Prot. of Dig. Serv. (Cyber Security), 2018, doi:
10.1109/CyberSecPODS.2018.8560673.

[11] E. Tyugu, “Artificial intelligence in cyber defense,” presented at the 3rd Int. Conf. on Cyb. Conf., 2011,
Tallinn. [Online]. Available: https://www.ccdcoe.org/uploads/2018/10/ArtificialIntelligenceInCyberDefen
se-Tyugu.pdf

[12] G. Bernieri, M. Conti, and F. Turrin, “Evaluation of Machine Learning Algorithms for Anomaly
Detection in Industrial Networks,” presented at IEEE Int. Symp. on Meas. Net., 2019, doi: 10.1109/
IWMN.2019.8805036.

[13] D. S. Bogatinov, M. Bogdanoski, and S. Angelevski, “AI-Based Cyber Defense for More Secure
Cyberspace,” in Handbook of Research on Civil Society and National Security in the Era of Cyber
Warfare, IGI Global 2016, doi: 10.4018/978-1-4666-8793-6.ch011.

[14] N. Kaloudi and J. Li, “The AI-Based Cyber Threat Landscape: A Survey,” ACM Comput. Surv., vol. 53,
no. 1, 2020, doi: 10.1145/3372823.

[15] I. Chomiak-Orsa, A. Rot, and B. Blaicke, “Artificial Intelligence in Cybersecurity: The Use of AI Along
the Cyber Kill Chain,” in Comput. Collect. Intel., 2019, doi: 10.1007/978-3-030-28374-2_35.

[16] “Suricata.” https://suricata-ids.org/
[17] “Anti-Virus Software.” https://cs.stanford.edu/people/eroberts/cs201/projects/2000-01/viruses/anti-virus.

html
[18] N. Känzig, R. Meier, L. Gambazzi, V. Lenders, and L. Vanbever, “Machine Learning-based Detection of

C&C Channels with a Focus on the Locked Shields Cyber Defense Exercise,” presented at CyCon 2019,
doi: 10.23919/CYCON.2019.8756814.

[19] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” J. Netw.
Comput. Appl., vol. 60, 2016, doi: 10.1016/j.jnca.2015.11.016.

[20] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-based network
intrusion detection: Techniques, systems and challenges,” Comput. Secur., vol. 28, no. 1, 2009, doi:
10.1016/j.cose.2008.08.003.

[21] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A Comparative Study of Anomaly
Detection Schemes in Network Intrusion Detection,” in SIAM Int. Conf. on DM, 0 vols., SIAM, 2003.

[22] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber, “System Log Clustering Approaches for Cyber
Security Applications: A Survey,” Comput. Secur., vol. 92, 2020, doi: 10.1016/j.cose.2020.101739.

[23] R. Alexander, “Reducing Threats by Using Bayesian Networks to Prioritize and Combine Defense in
Depth Security Measures,” J. Inf. Secur., vol. 11, no. 3, Art. no. 3, 2020, doi: 10.4236/jis.2020.113008.

[24] K. B. Lyons, “A Recommender System in the Cyber Defense Domain.” MA diss., Dept. of Elect. and
Comput. Eng., Grad. Sch. of Eng. and Man. Air Force Inst. of Tech., OH USA, 2014. [Online]. Available:
https://scholar.afit.edu/etd/612

[25] X. Fang, M. Xu, S. Xu, and P. Zhao, “A deep learning framework for predicting cyber attacks rates,”
EURASIP J. Inf. Secur., vol. 2019, no. 1, 2019, doi: 10.1186/s13635-019-0090-6.

[26] Y. Shin and L. Williams, “An empirical model to predict security vulnerabilities using code complexity
metrics,” ACM-IEEE Int. Symp. on Empirical Software Engineering and Measurement, 2008, doi:
10.1145/1414004.1414065.

[27] S. A. Abdul-Kader and J. C. Woods, “Survey on Chatbot Design Techniques in Speech Conversation
Systems,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 7, Art. no. 7, 2015. [Online]. Available: http://dx.doi.
org/10.14569/IJACSA.2015.060712

18

[28] E. Handoyo, M. Arfan, Y. A. A. Soetrisno, M. Somantri, A. Sofwan, and E. W. Sinuraya, “Ticketing
Chatbot Service using Serverless NLP Technology,” presented at the ICITACEE 2018, doi: 10.1109/
ICITACEE.2018.8576921.

[29] F. E. Office, “AI Chatbot to Realize Sophistication of Customer Contact Points,” FUJITSU Sci Tech J, vol.
54, no. 3, 2018.

[30] A. M. Rahman, A. A. Mamun, and A. Islam, “Programming challenges of chatbot: Current and future
prospective,” presented at IEEE R10-HTC, 2017, doi: 10.1109/R10-HTC.2017.8288910.

[31] NATO CCD COE, “LockedShields 2013 After Action Report,” https://ccdcoe.org/uploads/2018/10/
LockedShields13_AAR.pdf (retrieved 05.01.2021)

[32] NATO CCD COE, “LockedShields 2012 After Action Report,” https://ccdcoe.org/uploads/2018/10/
LockedShields12_AAR.pdf (retrieved 05.01.2021)

[33] “Zeek Flowmeter.” https://github.com/zeek-flowmeter/zeek-flowmeter

