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ABSTRACT
Over the last decade, programmable data planes have en-
abled highly customizable and efficient packet processing
in commercial off-the-shelf hardware. Although researchers
have demonstrated various use cases of this technology, its
potential misuse has gained much less traction. This work
investigates a typical surveillance scenario, VoIP call identifi-
cation and monitoring, through a tailored data-plane attack.
We introduce DELTA, a network-level side-channel at-

tack that can efficiently identify VoIP calls and their hosting
services. DELTA achieves this by tracking the inherent net-
work footprint of VoIP services in the data plane. Specifically,
DELTA stores the user addresses recently connected to VoIP
services and links potential call flows with these addresses.
We implement DELTA on existing hardware and con-

duct high-throughput tests based on representative traffic.
DELTA can simultaneously store around 100 000 VoIP con-
nections per service and identify call streams in-path, at
line-rate, inside terabits of Internet traffic per second, imme-
diately revealing users’ communication patterns.
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1 INTRODUCTION
Since its inception in 2014, data-plane programmability [16]
and P4 language [15] have powered innovation in various
networking areas, including security and privacy [10, 29, 45].
Researchers have already demonstrated different use cases
where commercial off-the-shelf programmable switches can
potentially replace or surpass proprietary network middle-
boxes [38, 55, 101] while leading Internet providers such as
Deutsche Telekom and AT&T have already been deploying
them in their networks [18, 89]. Now that the entry barrier
to in-network active intelligence is more accessible than ever,
it is time to study the other side of the coin: how does in-line
programmability facilitate potentially oppressive activity?
This work studies VoIP call identification, a well-known

example of mass surveillance and censorship [30, 39, 61]. Past
investigations reveal that NSA’s PRISM program explicitly
targeted calls for several popular VoIP applications [40, 51,
71], and various countries had been spying on their residents’
calls [57, 80, 81]. Indeed, the news indicates that even the
identification of the hosting service is critical as certain dis-
sident groups choose specific services to hold their internal
communication [2, 26, 60, 64, 87].

Given this interest, it is unsurprising that vendors supply
equipment capable of monitoring VoIP calls for on-demand
policing, blocking, and recording. This task is non-trivial
since modern VoIP applications encrypt calls end-to-end [83–
85], preventing the agencies from directly intercepting the
calls. However, end-to-end encryption does not protect the
calls’ metadata, such as the IP addresses of the communicat-
ing parties,1 packet sizes, inter-packet delays, or flow dura-
tions. Middleboxes such as Sandvine’s [75] analyze this meta-
data to eventually “show who is talking to whom, for how
long, and try to discover online anonymous identities” [35].

While these proprietary middleboxes are available today,
they tend to be expensive, at $50 per Gbps [74], compared to
a programmable switch which costs around $2 per Gbps [11].
A closer look into the technicalities of these middleboxes
justifies their high cost. First, they are resource-intensive
since they analyze traffic in their CPU clusters off-path [73].
Second, they require trafficmirroring or advanced state distri-
bution to synchronize in the face of asymmetric routing [73].

1VoIP applications, by default, establish direct connections between the
caller and the callee for better performance [83–85].
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Third, they necessitate continual vendor support since traffic
analysis depends on statistical learning and, thus, regular
model updates [73]. However, this complexity has a silver lin-
ing inmalicious use cases: it keeps the functionality relatively
out of reach, as vendor dependence, dedicated middleboxes,
and monetary costs are all limiting factors. We argue that
programmable switches challenge these assumptions and de-
mand a reassessment of this technology’s possible malicious
use cases. Although programmable switches are heavily re-
stricted in their computation and storage capabilities, we
show they are highly customizable for tailored attacks.

We introduce DELTA, a novel network-level side-channel
attack that can efficiently identify VoIP calls in-path, in real-
time, and at scale. DELTA differentiates from traffic analysis
approaches [62, 72] by merely tracking connections instead
of examining traffic. More specifically, DELTA leverages the
VoIP signaling mechanism used for peer discovery and call
setup: VoIP callers and callees first connect to a publicly
known central application server shortly before communi-
cating directly with each other. This fundamental call boot-
strapping mechanism, used by prominent VoIP platforms,
leads to a triangular connection pattern. DELTA takes ad-
vantage of this pattern by storing the signaling connections
and linking the candidate call flows to these stored addresses.
More precisely, DELTA continuously keeps track of the client
IP addresses in recent signaling connections. Then, for each
arriving flow, DELTA checks the flow address tuple against
the stored IP addresses. This mechanism reveals the par-
ticipating addresses of a call and identifies the facilitating
application service without examining the traffic.
DELTA’s in-path continuous tracking approach is par-

ticularly compelling considering reported incidents’ years-
long, country-wide surveillance scenarios [5, 36, 77]. First,
DELTA detects call flows with the very first TLS [68] packet
in the data plane. That enables the switch to take direct ac-
tions such as rate-limiting, blocking, or logging compared
to traffic analysis which requires a flow observation pe-
riod for inference and possibly off-path decision loops. Sec-
ond, DELTA does not require policy-based re-routing or
traffic mirroring to redirect flows into dedicated policing
hardware. Administrative overheads such as policy-based
re-routing configuration, distributed traffic mirroring, or off-
path decision-loops introduce considerable complexity to a
network. Indeed, researchers recently discovered a partial
failure of a similar policing application in Russia [95].
DELTA is conceptually simple yet challenging to imple-

ment in the data plane. First, DELTA identifies signaling
flows by reading the Server Name Indication (SNI) exten-
sion [33] included in TLS handshakes. Since the SNI field is of
variable length and its position within the packet is unfixed,
it is challenging to parse it correctly. We build a multi-stage
finite state machine to parse this field iteratively. Second,

DELTA requires real-time global state synchronization to
share the stored signaling addresses among switches. For
this, we implement a data-plane message exchange protocol
under the hardware limitations of programmable switches.
Third, DELTA requires continuously storing global signaling
IP addresses in a scalable manner under tight memory con-
straints. That requires a space-efficient query data structure
that can also keep track of the inserted entries’ liveness. We
achieve this by implementing a data structure called Double
Buffering Bloom Filter (DBBF) [24] entirely in the data plane.

We implement DELTA on an Intel Tofino switch [42] and
evaluate our prototype against both real and synthesized
packet traces. Our experiments show that a single switch’s
DBBF can hold connection states to simultaneously detect up
to 100 000 unique VoIP calls for each VoIP application with
virtually no hash collisions within up to 6.4 Tbps of traffic,
the switch’s maximum throughput. To put these numbers
in perspective, AMS-IX [7] – the busiest Internet location in
the world – transits around 11 Tbps of traffic on its peak [8],
whereas Whatsapp, the most popular VoIP service in the
world, facilitates 100 million calls per day worldwide [63]. In
other words, a rough extrapolation suggests that even two
switches would have enough capacity to process worldwide
VoIP traffic, provided the traffic would cross these switches.

DELTA demonstrates that, by commodifying highly effi-
cient and capable hardware, programmable data planes have
the potential to strengthen network attacks. From a cost-
benefit risk-assessment perspective, this technical shift calls
for further investigation as faulty assumptions regarding the
practicality and cost of attacks may lead to underestimations
of potential threats. We intend this work as a wake-up call
and thereby devote §6 to discussing best practices that users
can deploy today agains DELTA.

2 OVERVIEW

DELTA is a network-level side-channel attack that iden-
tifies VoIP calls and their facilitating VoIP applications. It
uncovers the IP addresses, and by that, the identities of users
making these calls, violating users’ privacy expectations.
Detecting the communicating parties and the VoIP appli-
cation service enables chains of attacks, including (i) selec-
tively blocking specific pairs of users on target VoIP ser-
vices; (ii) performing behavioral analysis per VoIP service;
(iii) tracking all the communications of VoIP users in real-
time; or (iv) building an allow-list, default-off VoIP ecosys-
tem enabled only for VoIP providers cooperating with the
attacker [6, 97].

This section first presents our attacker model (§2.1); next,
we describe on a high-level how VoIP services operate (§2.2).
Then, we illustrate DELTA in action (§2.3) and discuss what
makes it challenging to implement entirely in the data plane.
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2.1 Attacker model

We consider an attacker controlling a territorial network
infrastructure such as intelligence agencies or governments
ruling over single or multiple Internet Service Providers. The
attacker mainly uses DELTA for its in-path VoIP call and ser-
vice type detection capabilities that can facilitate real-time
blocking or recording of calls. The attacker cannot collude
with the VoIP application service providers nor break their
encryption or software systems. However, the attacker can
eavesdrop on domestic networks. We believe this attacker
model realistically depicts the setting observed in past call
surveillance and interception incidents from various coun-
tries. Notably, these incidents were often ruled to be unlawful
and illegal [70, 91].
The attacker knows the IP addresses and domain names

used by the target VoIP application providers. Note that this
information is publicly available. Thereby, the attacker does
not compromise any VoIP infrastructure. The attacker’s goal
is to uncover the communicating parties’ IP addresses, the
facilitating application, along with the time and duration
of the calls. If a caller is behind a middlebox with address
translation capabilities, the attacker captures the public IP
address of the middlebox. In this work, we assume the at-
tacker has the ability to map the public IP address and port
combinations generated by middleboxes to user identities.
We note that DELTA can also be deployed on existing mid-
dleboxes that handle user traffic. Such an implementation,
however, would require updates to existing middleboxes and,
therefore, would be challenging to deploy compared to the
standalone implementation proposed in the current work.

2.2 VoIP call setup
DELTA leverages the unique network-level call bootstrap-
ping footprint that VoIP calls produce. All well-known VoIP
services implement call establishment in a signaling and a
streaming phase [13, 46, 53, 86]. The signaling step involves
a “rendezvous server” with caller ↔ server and callee ↔
server communication typically encrypted using TLS. This
call bootstrapping allows direct caller ↔ callee communi-
cation in the streaming step, typically over UDP [27, 66].
Eventually, an eavesdropping attacker can identify the trian-
gular connection pattern even with encryption: two users
communicate with a publicly known VoIP application end-
point, and shortly after, direct inter-communication over
UDP flows begin.
Fig. 1 shows2 the call setup between Alice (caller) and Bob
(callee) over an arbitrary VoIP application:

2The enumerated dashed circles in the remaining text in this section stand
for the dashed circles in Fig. 1.

6

471

Signaling flows

Streaming flow

State distribution

Alice Bob

3

2

5
8

Figure 1: DELTA overview. An attacker identifies and
couples VoIP signaling and streaming connections to
reveal the IP addresses of the caller and the callee.

1 Alice sends an INVITE message to the VoIP server,
indicating the intent to call Bob.

3 The server forwards the INVITE to Bob.
4 With an OK message, Bob informs the VoIP server that

he accepts the call.
6 The server forwards the OK to Alice.
7 Alice and Bob establish a direct UDP connection to

stream call audio and video data.

Observe that the users can not establish a direct connec-
tion in some corner cases, such as when behind specific
firewalls or symmetric/restricted network address transla-
tors (NATs). In such cases, the VoIP application provider falls
back to a relayed mode of operation, which routes the call
trafic over the VoIP service infrastructure. As DELTA only
captures the two edges of the triangle in such cases (i.e.,
caller ↔ server and callee ↔ server), the attack mechanism
needs modification to report these incidents. However, our
experiments show that the tested VoIP services avoid the
relayed mode unless necessary, as it introduces more delay
and network costs for the VoIP provider.
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2.3 DELTA in action
DELTA leverages programmable data planes to detect VoIP
calls in-path, in real-time, and at scale. In a nutshell, the
switches analyze each passing flow to identify (i) signaling
flows between VoIP clients and a VoIP service and (ii) call
flows between two VoIP clients.

If a switch detects a signaling flow, it records the IP address
of the client and notifies the other switches of the discovered
connection for state synchronization. Thereby, the switches’
data planes maintain a synchronized set of active client ad-
dresses and match UDP flows with them to detect the flows
established between these addresses.
DELTA detects a call initiated between Alice and Bob in a
four-step process, as also illustrated in Fig. 1:
(1) The attacker obtains the IP addresses of VoIP applica-

tions and their domain names to configure the switches
with the signaling information.

(2) The switches identify connections to VoIP servers and
store/ distribute the source IP addresses in the data
plane. The registered addresses are candidates for up-
coming calls as the detected flows such as 1 and 4
represent potential signaling connections.

(3) The switches maintain a synchronized global state of
registered IP addresses. The distribution of signaling IP
addresses occurs entirely in the data plane, as indicated
by the green dashed arrows at 2 and 5 .

(4) The switches locally check the UDP traffic and match
the corresponding IP addresses against those regis-
tered in the previous step. Thereby, the attacker iden-
tifies VoIP calls in-path, as portrayed in 8 .

We leverage programmable data planes in three novel ways:
First, DELTA inspects the Client-Hello packets [68] –

the first packet in the TLS handshake – destined for VoIP
application addresses to check on the VoIP domain names.
Since the SNI field is of variable length and its position within
the Client-Hello packet is unfixed, we iteratively parse the
packet and decode the domain name with programmable
match-action tables over multiple pipeline stages.
Second, since DELTA requires state distribution for sig-

naling addresses, we implement a data-plane broadcasting
mechanism to distribute signaling events throughout the
network. Programmable packet parsers enable us to develop
our custom dissemination protocol and update the network
before the call has already begun.

Third, DELTA overcomes the scalability challenges posed
by the global state storage by implementing a probabilistic
data structure called Double Buffering Bloom Filter. DBBF
maintains the recently seen IP addresses in a scalable manner,
decays the aged elements, and allows queries at constant
processing time. Programmable arithmetic logic units and
random-access registers enable DBBF’s implementation.

3 DESIGN AND IMPLEMENTATION
In this section, we first review the high-level system design
for DELTA (§3.1). Then, we elaborate on the technical chal-
lenges of implementing DELTA under the constraints and
limitations of programmable switches (§3.2). In the remain-
ing, we delve into the low-level details of identifying signal-
ing users (§3.3), distributing the identified addresses (§3.4),
and storing the addresses continuously and scalably (§3.5) –
all in the data plane. Finally, we explain how the switches
detect the VoIP call flows in-path and in real-time (§3.6).

3.1 High-level architecture
A DELTA switch essentially has two distinct workflows:
(i) identifying and distributing signaling connections and
(ii) detecting call flows. Namely, an IP packet has two pipeline
routines, as illustrated in Fig. 2 with the orange-colored and
the blue-colored process paths:

The orange-colored path illustrates the signaling connec-
tion discovery and dissemination of these addresses over
the network. Since it is common for VoIP applications to
run on virtual-hosting services such as Microsoft Azure [12],
they share IP addresses with other applications. Thereby,
DELTA applies three filters to match beyond their IP ad-
dresses. First, the switch checks whether a packet’s destina-
tion IP address matches those of target VoIP servers. Second,
the switch opportunistically inspects the TLS packet type
to identify the Client-Hello packets. Third, if the packet
is a Client-Hello packet, the switch examines the packet
content to match the string representing the domain name in
the SNI field. In case the packet contains a domain name that
belongs to a VoIP service, the switch classifies the packet as
part of a signaling connection. In this case, the switch stores
and disseminates the packet’s source IP address as a poten-
tial caller or callee with the destination VoIP service. The
storage is done by insertion to the DBBF. The dissemination
to other switches is done by cloning the original packet and
multicasting the clone in the data-plane broadcast topology.
The blue-colored path illustrates the call flow detection.

The switch queries every UDP packet against the DBBF to
see if the packet’s source and destination IP addresses have
both been previously registered in the DBBF as potential
signaling connections. If so, the packet is identified as a
streaming packet. Thus, the detection is complete: the source
and the destination establish a direct call stream, and the
switch takes the necessary action.

While the idea is conceptually simple, implementing this
procedure at scale is challenging because it needs to (i) pro-
cess all packets to distinguish those that belong to VoIP calls
and (ii) store state across packets and among switches to
recognize potential callers and callees.
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3.2 Implementation challenges
We implement DELTA in an Intel Tofino switch [42] in
around 1500 lines of P4 code.3 We briefly introduce pro-
grammable data planes and summarize the constraints and
limitations that impact our design.

A primer on programmable data planes. Programmable
data planes with PISA architecture contain five main com-
ponents: parser, ingress pipeline, traffic manager, egress
pipeline, and deparser [16]. Once a packet arrives, the switch
parses the packet headers and streams the parsed represen-
tation through the pipeline. Afterward, the packet traverses
an ordered series of pipeline stages with match-action tables,
memory registers, and arithmetic logic units.

The match-action tables can match (read) the parsed rep-
resentation of packets and additional metadata such as the
packet’s ingress port number and apply actions on top of
them. The actions can modify the parsed headers and packet
metadata and read from or write to stateful memory registers.
Typically, each packet streams through the pipeline ex-

actly once. However, it is possible to circulate packets within
the switch for additional processing, referred to as recircula-
tion. The recirculated packets pass through a dedicated port
with fixed throughput, called a recirculation port. Lastly, it
is possible to duplicate a packet to create a clone of a packet
and process the clone independently.

Hardware constraints. While programmable data planes
offer functional flexibility, they still need to process packets
at the line rate of their throughput. That, combined with the
limited resources, results in some constraints. More specifi-
cally, the following restrictions impact our design decisions:
R1 The number of pipeline stages limits the number of non-

parallelizable actions available per packet.
R2 The available memory per stage is fixed and limits the

amount of data storage.
R3 A packet can only access a memory block once and only

when it is at the stage containing that block, and that
restricts the feasibility of stateful algorithms.

In the following, we mention these three restrictions for the
places where they appeared as design challenges.

3.3 Identifying signaling packets
As the orange-colored flow in Fig. 2 illustrates, packets go
through several filters before the switch identifies them as
signaling connections. First, switches filter signaling packets
by their transport protocol type (TCP). Second, they filter the
destination addresses for the VoIP applications’ hosting ad-
dresses. Since these addresses can host multiple applications

3P4 [15] is a domain-specific language for programming packet forwarding
platforms.
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Figure 2: DELTA workflow. The orange-colored flow
identifies and stores the addresses undergoing a sig-
naling routine, whereas the blue-colored flow checks
potential call flows against the stored addresses.

virtually (e.g., Signal uses Microsoft Azure [12]), switches
also inspect the domain name to identify the applications.
We identify signaling packets by checking three proper-

ties (see Fig. 2): (i) the destination is a known VoIP service’s
server; (ii) the packet contains a TLS Client-Hello mes-
sage; and (iii) the requested domain name corresponds to
the targeted VoIP service.

Signaling packets have known destinations. In the first
filtering step, we look at the packet’s destination IP address
and check whether it belongs to a known VoIP service’s set of
IP addresses. However, via virtual hosting, VoIP services such
as Skype [88] and Signal [12] share these IP addresses with
other applications. Therefore, merely checking these hosting
infrastructures’ IP addresses will falsely identify connections
to other services. As we describe, DELTA examines the TLS
Client-Hello packet headers to verify the domain name of
the sought VoIP applications.
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Signaling flows begin with Client-Hello. Signaling con-
nections belonging to any VoIP service are TLS-encrypted.
We leverage that the first TLS packet is a Client-Hello
handshake message in the second filtering step. Since virtual-
hosting front-end servers need to read the application do-
main name to know how to process it, these packets carry the
domain name in their SNI fields. After parsing the IP and TCP
headers, the switch opportunistically parses the TLS record
header to check if a packet carries a TLS Client-Hellomes-
sage. If the location corresponding to the record header type
is “0x16” and the handshake type is “0x01”, the switch de-
duces the packet contains a Client-Hello message.

Client-Hellos’ contents reveal the service. In the last
step, we analyze the content of packets that pass the previ-
ous steps and contain Client-Hello messages. We leverage
that a Client-Hello of a signaling packet includes the VoIP
application’s domain name. For example, Skype connections
carry hostnames such as “*.broadcast.skype.com” in the SNI
field of the Client-Hello packets [88].
Parsing domain names is challenging in data planes be-

cause they parse packets as fixed-length bitstrings. However,
the TLS header consists of several optional extensions of vari-
able length and in no particular order [33]. Therefore, strings
in extension fields, precisely the SNI field, can occur at any
offset within the packet. We use the technique developed
by Jepsen et al. [44] to perform string matching only on the
Client-Hello packets that passed the previous two filters.
Namely, we convert string patterns into deterministic finite
automatons (DFAs) and store the DFA state transitions in
match-action tables. In our case, the state machine works
at the byte-level granularity, operates on ASCII characters
as the SNI field is encoded in plain text, and maps on to the
consecutive stages of the pipeline in match-action tables.

The string search process works as follows: we convert pat-
terns representing domain names into 𝑝-stride DFAs, where
𝑝 is the number of characters matched per transition. We
then map this DFA into a match-action table. We replicate
the transition table on multiple stages to achieve multiple
transitions per pipeline pass. In each pipeline pass, the tran-
sition tables can search a fixed number of bytes: 𝑝 times the
number of pipeline stages equipped with DFA tables. As the
number of stages is limited (R2), we need multiple pipeline
passes to search deeper into the packet. Therefore, the switch
initially clones the packet and forwards the original packet,
as usual, to not delay its transmission. Meanwhile, the cloned
packet recirculates within the switch to emulate multiple
pipeline passes. The switch drops the searched blocks from
the cloned packet at the end of each pipeline pass and at-
taches the current state of the DFA to the remaining packet
for its next pass. In the next pass, the switch can parse deeper
into the packet as the packet gets trimmed down in each pass.

If the string search succeeds, the switch goes on with the
dissemination and storing procedures.

3.4 Disseminating signaling packets
Once a switch successfully classifies a cloned packet as be-
longing to a signaling flow (§3.3), it disseminates the event
throughout the network for each switch to store the source
address and the service type. We assume the network topol-
ogy is static and known in advance, but we do not consider
a specific network topology. Therefore, we choose “broad-
casting on a spanning tree” to provide a general approach to
our dissemination mechanism.

Broadcasting on a spanning tree. We assign a root-ID to
each DELTA switch that runs the detection algorithm. Each
switch maintains spanning trees by a match-action table that
maps root-IDs of all switches to multicasting groups. This
table forwards the incoming messenger packets to children
switches entirely in the data plane. If a switch detects a
signaling event, the messenger packet travels through the
specific spanning tree that maps to this switch’s root-ID with
the root-ID attached to the packet.

As an asynchronous broadcast algorithm, this mechanism
has a message complexity of 𝑛 − 1 (𝑛 being the number of
switches) and a time complexity of 𝑑 , assuming a rooted
spanning tree with depth 𝑑 . Since we do not consider a spe-
cific network topology, we can not make precise statements
on how long the packet propagation takes. However, in §4.2,
we measure the data-plane processing and transmission de-
lays to show that a data plane algorithm takes negligible
time compared to a software procedure (i.e., VoIP protocols
in our case) regardless of 𝑑 . Likewise, we show the message
complexity is also negligible compared to the maximum num-
ber of signaling events DELTA can store in the data plane.
Thereby, the two metrics are not bottlenecks for our design.

3.5 Storing the signaling addresses
After detecting signaling packets, we need to store their
source IP addresses in a data structure to check whether
an incoming UDP packet belongs to a VoIP call. The data
structure needs to be space-efficient to adhere to the mem-
ory constraints of programmable data planes (R1), support
queries in constant time to facilitate real-time detection, and
support element decay to only keep source addresses that
recently communicated to a VoIP server.

Double Buffering Bloom Filter. The DBBF belongs to the
Bloom Filters (BF) family, which are space-efficient, constant-
time, probabilistic data structures designed to answer set
membership queries. Unlike regular BFs, DBBFs support
element decay by operating in an active/ standby scheme to
evict the stale elements in a first-in, first-out manner [24].

*.broadcast.skype.com
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More specifically, the data structure consists of two equal
and independent BFs, namely BF-A and BF-B, where one is
in active mode while the other is in standby mode. The two
BFs swap modes periodically after every flush interval. The
active BF of each flush interval stores all signaling packets’ IP
addresses that arrived during this flush interval by encoding
the IP addresses into BF indexes and setting the respective BF
entries based on the VoIP service type. The standby BF stores
only the packets that arrived in the second half of the current
flush interval, namely the most recent ones. Consequently,
as the swap occurs, the new active BF already contains the
entries that have arrived in the last half flush interval.
We illustrate the operation of a representative DBBF in

Fig. 3. DBBF works in four phases, with a flush action in ev-
ery two phases. In Phase 00, two packets with IP addresses
“1.1.1.1” and “2.2.2.2” arrive while BF-A is in the active mode.
Thus, they both get inserted into the BF-A. Insertion into a
BF works by hashing the address with multiple distinct hash
functions – two hash functions in Fig. 3 – and setting the
entries for the resulting indexes. The third packet with the
source IP address “3.3.3.3” arrives during Phase 01, trigger-
ing an insertion into BF-A and BF-B.
During the first half of each flush interval, the controller

flushes the standby BF. For instance, in Fig. 3 in Phase 10,
the BFs swap modes. Thereby, the BF-B becomes the active
BF, and the controller flushes the standby, i.e., BF-A. That
means, unlike the first two packets’ IP addresses, the third
packet’s IP address will remain in the DBBF after the swap-
and-flush operation. Consequently, at any point in time, the
DBBF contains the IP addresses corresponding to packets
that arrived within the past two phases.

Keeping phase of DBBF in the data plane. The data
plane uses packets’ timestamps to determine the current
phase. The phase dictates which BF(s) the switch should
use for insertions and queries. The switch can use any two
consecutive bits of the timestamp for phasing. Assume we
use the two least significant bits of each packet timestamp.
The first two packets in Fig. 3 arrive by a timestamp ending
with 00, as the phase indicates. Upon arrival, this two-bit
field matches on a phase table, defining the phase, and the
packets get inserted into BF-A. The bits’ position and the
granularity of the timestamp determine the flush interval of
the DBBF as the bits will flip based on the time value they
represent. For instance, in the mentioned example, the flush
interval would be every time the left-bit flips.

Storing the service type. In Fig. 3, each entry represents
an eight-bit vector. As the switch detects a signaling packet,
it encodes the packet’s service type into eight-bit metadata.
We use one-hot encoding, a vector representation of ser-
vice types where each column in the array represents a dis-
tinct service. As the packet’s source address is hashed into

FlushFlush Streaming
src: 3.3.3.3
dst: 2.2.2.2

Flush

Signaling
src: 1.1.1.1

Signaling
src: 2.2.2.2

Signaling
src: 3.3.3.3

Insert

Flush

Flush Interval

Query

Phase 00
Insert: A
Query: A

Phase 10
Insert: B
Query: B

Phase 11
Insert:A&B
Query: B

Phase 01
Insert into A and B

Query from A

A B A B A B A B A B

Figure 3: The DBBF operation in four phases. At any
point in time, the DBBF preserves the insertions done
within the last two phases.

the DBBF, this vector metadata is XORed into the respective
indexes. Thereby, the DBBF preserves the packets’ service
types. In Fig. 4, we see two Skype packets getting hashed into
four entries of the DBBF by flipping the first column bits of
each entry. Meanwhile, the DBBF already contains Telegram,
Line, and Viber insertions from previous insertions.

DBBF maintenance. The controller periodically flushes
the standby BF. Flushes are asynchronous but must occur
during the flush interval’s first half. The switch inserts each
packet’s timestamp into a register for the controller to know
which BF to flush. Since the register contains the most recent
packet’s timestamp, the controller reads this register at a high
rate4 and flushes the corresponding BF when the register’s
phase-bit flips.

4Since the flush interval is on the order of seconds in our use case, the
control plane keeps up with the bit flips in our experiments.
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Mapping DBBFs to hardware. Implementing DBBF in
the data plane is challenging since accessing a memory block
multiple times is not possible (R3). The design comes with
two shortcomings. First, the switch can not set or read multi-
ple indexes (i.e., one for each hash output) corresponding to
a BF (R3). Second, when a potential call packet arrives, the
switch can not check whether both its source and destination
addresses are in the BF in one pipeline pass (R3). We split
each BF into 𝑘 segments to address the first shortcoming
and place each segment in a separate pipeline stage with
an independent register block and a single hash function.
To address the second shortcoming, we replicate the entire
DBBF to have two identical copies to query one copy for the
source IP address and the other for the destination IP address.
In other words, we have four BF registers: two copies of the
two sides (i.e., BF-A and BF-B) of the DBBF. As a result, the
DBBF’s capacity, i.e., the number of insertions it can support,
is the bottleneck in our design due to other restrictions re-
lated to storage capacity (R1) and the number of stages (R2).
We evaluate this bottleneck in §4.2.

3.6 Identifying peer-to-peer VoIP traffic
VoIP calls use UDP as their transport layer protocol [27, 66].
Therefore, we filter UDP packets as potential VoIP traffic
and check for each UDP packet whether it belongs to a con-
nection between potential VoIP call participants whose IP
addresses are stored in the same columns, i.e., the service
type of the BF (see Fig. 4). In particular, we independently
compute the same 𝑘 hash values (i.e., BF indexes) from the
packet’s source and destination addresses and check if all the
bits of those indexes of the active BF are simultaneously set
at any column. We AND the metadata fields extracted from
each 𝑘 segment of the DBBF to detect a column that is set
at every segment. As an illustration, in Fig. 3, when a poten-
tial streaming packet arrives (with source IP “3.3.3.3” and
destination IP “2.2.2.2”), we check whether both its source
and destination addresses correspond to IP addresses that
have been previously inserted into the active BF. If both IP
addresses are in the BF (the service type columns are omitted
in Fig. 3), as in the figure, we know that the two hosts had
sent signaling packets before, and we report the IP pair as
an identified VoIP call with its service type.

4 EVALUATION
We test DELTA’s hardware implementation on a 6.5 Tbps
throughput Intel Tofino switch [42]. Our experiments focus
on three aspects where the switches’ performance directly
impacts DELTA’s effectiveness. More specifically, we study
the following questions: (i) how many Client-Hellos can
the switch inspect in one second; (ii) what the processing
delay for discovering and disseminating the signaling packets

Column Service

1. Skype
2. Telegram
3. Signal
4. Whatsapp
5. Line
6. Viber
7. n/a
8. n/a

Figure 4: The DBBF arrays. Each BF entry consists of
eight bits, where each bit represents a target service.

is; and (iii) how many signaling addresses can a switch store
with its limited memory resources.

We first explain how we collect, synthesize, and generate
our data set (§4.1). Then, we present experimental results
and findings in light of our stress tests in hardware (§4.2).

4.1 Experimental setup
We build our experiments in three steps. First, we extract the
publicly available VoIP information required to perform the
attack, which we call reconnaissance. Then, we synthesize
our data from real-life calls collected among volunteering
participants. Finally, we generate enough traffic from this
data set to stress the hardware in our lab testbed.

Reconnaissance. DELTA requires two publicly available
information for each VoIP application. First, the possible set
of IP addresses potentially hosting the service; second, the
domain name we search for in the Client-Hello SNI field.
We consider Signal, Skype, Telegram, and WhatsApp for

our experiments. We select all AmazonWeb Services [4], and
Microsoft Azure [12] IP addresses for Signal, as the applica-
tion runs on both cloud providers. For Skype, we use Skype
IP addresses announced explicitly by Microsoft [88]. In Tele-
gram’s case, we consider all the IP addresses advertised from
the AS62041, Telegram’s Autonomous System [67]. Finally,
for WhatsApp, we use WhatsApp IP addresses provided by
Meta [34]. Observe that this information is subject to change,
but the core idea remains the same: the information is pub-
licly available. In practice, attackers can also parse these ser-
vices’ IP address-domain name mappings from their authori-
tative DNS servers. For service names, we leverage the direc-
tions for network administrators to enable allow-lists for the
respective services. For example, Microsoft asks operators to
allow “*.broadcast.skype.com”, “*.secure.skypeassets.com”,
“*.mstea.ms”, among others, for Skype operations [88]. We
exclusively search for these strings on the Client-Hello
packets destined to the traced IP addresses.

*.broadcast.skype.com
*.secure.skypeassets.com
*.mstea.ms
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Traffic synthesis. Our experiments require two types of
traffic. First, we need hundreds of thousands of VoIP trian-
gles (i.e., the three connections of a VoIP call) to measure
the formation of hash collisions in the DBBF. This test re-
veals how many address insertions it takes to start obtaining
false positives for arbitrary – non-VoIP – UDP flows. Second,
we need millions of Client-Hello packets randomly dis-
tributed in size and service name to test how many packet
inspections it takes to exhaust the recirculation port. We use
the CAIDA traces [20, 21] to obtain this Client-Hello data
set. Lastly, we base performance-related tests on these data.

For the realistic VoIP triangles, we follow three steps: First,
we collect a small set of VoIP traffic by running Signal, Skype,
Telegram, and WhatsApp calls between lab members, includ-
ing overseas holidays and conferences for higher variation.
Technically, these calls include WiFi to WiFi, mobile to mo-
bile, and WiFi to mobile user connections, along with dif-
ferent cases behind firewalls or NATs in the case of WiFi
connections. In these experimental calls, we observed mobile
users represented by their public IP addresses, whereas WiFi
users represented by their gateways’ public IP addresses. In
deployments where NAT traversal is not possible (such as
cases in which networks use symmetric/restricted NATs),
and consequently the application relays the VoIP call [54],
we do not observe the triangular connection pattern. We
therefore exclude relayed calls from the traces used in our
evaluation, as DELTA does not apply to relayed calls. Second,
we expand the original data set by generating new triangles
with random user IP address tuples. Eventually, the process
results in each recorded and synthesized call appearing as
an independent VoIP call. We do not change the traffic shape
as DELTA is oblivious to traffic characteristics. Still, we uni-
formly distribute the initial call formation (i.e., the time it
takes for the call flow to appear) in the range of delays we
observed. Finally, we combine the VoIP traffic with back-
ground traffic to measure the hash collisions in the DBBF.
The background traffic consists of UDP packets with uni-
formly random source and destination addresses and blends
in with the call flows coming from VoIP traffic.

Traffic generation. We use TRex [1] to replay the syn-
thesized traffic, i.e., the VoIP calls and the background traf-
fic. We control the traffic rate by adapting the number of
generated flows to a single DBBF flush interval. TRex gener-
ates the traffic uniformly since we do not have an apparent
reason to assume nonuniformity for short refresh intervals.
If we describe the process with an example, suppose the
VoIP calls rate is 100 000 calls (i.e., 100 000 triangles), and the
background UDP flows are 1 000 000, both per flush interval.
Then, by the time half of the flush interval is over, the switch
observes 50 000 calls and 500 000 background UDP flows.
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Figure 5: Recirculation port stress measurement. In the
worst case, the switch can inspect 5 million packets for
the 100 Gbps recirculation port capacity.

4.2 Experiment results
DELTA’s effectiveness depends on hardware performance
over three aspects. First, discovering signaling packets im-
poses a bandwidth overhead as the switch recirculates the
cloned signaling packets multiple times. Since the dedicated
recirculation port has a maximum capacity of 100 Gbps, it
sets an upper bound on the number of possible packet in-
spections. Second, signaling discovery and dissemination
both induce process time and overhead. That is because in-
specting the signaling packets take multiple recirculations,
and dissemination requires attaching (for the sender) and
parsing (for the receiver) the messenger packets’ headers.
The delay packets experience in this process may impede the
attack’s reaction time. Third, storing signaling IP addresses
require limited data plane memory. As memory dictates the
allocated space for the DBBF, the switch memory directly
impacts the attack’s capacity.

Millions of packet inspections per second. Switches
perform signaling inspections over all the Client-Hello
packets destined to the IP addresses of a VoIP application.
The number of total connections can be much higher than
VoIP calls due to virtual hosting with other applications
or in-app multiplexing (e.g., Skype calls, messages, and file
transfers all connect to Skype servers). For this reason, we
instead measure howmany inspections a single recirculation
port can support under different packet sizes.

DELTA consumes the whole clone packet before conclud-
ing the packet is indeed not destined for a VoIP applica-
tion. We use CAIDA traces [20, 21] to reason about the size
of Client-Hello packets. We find that the Client-Hello
packet size varies between 250 and 600 bytes. Specifically, in
the worst-case scenario, a packet requires 15 rounds of recir-
culations. The black line in Fig. 5 shows that the recirculation
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Figure 6: Processing overhead for Skype Client-Hello
packets. The discovery process takes on average 3820.7
ns, while the dissemination process introduces a la-
tency of 484.5 ns per hop.

port’s capacity is 100 Gbps. In the worst-case scenario (i.e., 15
recirculations for each packet), a single switch can inspect up
to 5 million Client-Hello packets per second, as illustrated
with the green curve. Note that this inspection process is
scalable as parallel switches can perform load-balancing.

Insignificant processing overhead. DELTA does not
introduce a processing overhead to the transmission de-
lay of original packets since it only processes on cloned
Client-Hello packets and messenger packets. The cloned
packets undertake two processes: the signaling packet dis-
covery and the dissemination where the messenger packets
flood the network. The DFA tables in our implementation
occupy 8 (out of 12) pipeline stages. Fig. 6 demonstrates the
processing time for 10 000 Skype Client-Hello packets. In
Skype’s case, the packet size is 364 bytes, requiring 4 recir-
culations until the switch detects the domain name in the
SNI field. The mean latency for this process is 3820.7 𝑛𝑠 . The
dissemination step only requires the switch to parse the mes-
senger packet and insert the discovered IP address in the
DBBF. The mean latency for this process is 484.8 𝑛𝑠 for each
switch on the flood path. Observe that we do not measure
the propagation time between the switches, as this highly
depends on the actual topology.

Mechanics behind DBBF false positives. The DBBF false
positives occur when a UDP packet’s IP address tuple coin-
cides with occupied entries in the DBBF due to hash colli-
sions. The chances of a hash collision increase as the DBBF
stores more addresses since each address insertion activates
more entries. Thus, the false-positive rate (FPR) depends
on the DBBF’s occupancy. Eventually, the likelihood of any

0 100,000 200,000 300,000 400,000

0%

2%

4%

6%

8%

10%

Fa
ls
e
po

si
ti
ve

ra
te

Used stages
10 Stages

9 Stages

8 Stages

7 Stages

Inserted connections per flush interval

Figure 7: Call density, memory usage, and FPR tradeoff.
The DBBF can store 100 000 calls for each flush interval
per application without any hash collision.

queried UDP flow falsely hitting the DBBF increases as the
number of stored connections in the DBBF grows.

Sensitivity analysis. The attacker can tune the system
based on (i) the number of pipeline stages to allocate; and
(ii) the DBBF flush interval. Thereby, we conduct a sensitivity
analysis of these two parameters for the false-positive rate.
First, each pipeline stage includes a limited amount of

memory and hash function units. Since the DBBF’s capacity
increases with greater storage and more hash functions to
query storage, more pipeline stages imply a bigger DBBF. In
other words, for a given number of calls per time unit (i.e., the
call density), more pipeline stages result in lower FPR due to
fewer hash collisions. Second, the flush interval marks the
duration between each reset of the standby BF (§3.5). Two
notions restrain the flush interval time: the call formation
time and the DBBF occupancy. The switch can only detect
the triangular pattern if the call flow appears within half a
flush interval of the signaling connections. Otherwise, the
controller flushes the signaling event before the call packets
hit the DBBF. On the other hand, a longer flush interval re-
sults in a higher DBBF occupancy, assuming uniform arrival
of application connections. The higher occupancy implies a
higher FPR due to more hash collisions. In our experiments,
we fix the flush interval and vary the call density, i.e., the
number of calls per flush interval, since the flush interval de-
pends on many factors such as geography, VoIP application’s
ring time, and signaling protocol’s keep-alive frequency.

Low DBBF false-positive rates. Fig. 7 illustrates how the
FPR changes based on a varying call density. As the call
density increases, the FPR increases for a given number of
pipeline stages. The distinct curves on the plot represent
the number of pipeline stages allocated. The curves show
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that the DBBF supports up to 100 000 concurrent signaling
connections for a flush interval in all cases. As the number
of stages increases, the supported number of simultaneous
connections can increase to 400 000 with a reasonable false-
positive rate of less than 4%.

No false negatives. By design, the DBBF data structure
does not allow false negatives (§3.5). However, hardware
failures could still occur in our experiments. Indeed, we have
not observed such gray failures, and all real and synthetic
VoIP call flows hit the DBBF. Observe that false negatives
can occur if the call establishment time exceeds half the flush
interval due to faulty tuning of the attack.

5 DISCUSSION
Although DELTA shares similarities with generic traffic clas-
sification, the use case requires further discussion, which
may concern intricacies that are not necessarily relevant for
best-effort operational use cases such as QoS. This section
first delves into DELTA’s precision and recall and how to im-
prove the attack’s potency (§5.1). Then, we discuss potential
limitations and explain our position regarding them (§5.2).

5.1 Precision and recall
Mass surveillance and policing is a “needle in the haystack”
problem that aims to identify a small number of noteworthy
events, such as dissident calls, in a vast pool. In this scenario,
a low FPR and a low false-negative rate (FNR) alone are
insufficient. Instead, it is also essential to have high precision
(i.e., positive predictive value (PPV)) and high recall (i.e., true
positive rate (TPR)). High precision defines the percentage
of the reported events that are actual VoIP calls:

𝑃𝑃𝑉 =
Number of reported connections which are calls

Number of reported connections
Whereas high recall marks the percentage of how many
actual VoIP calls get predicted out of all the actual VoIP flows
within the network:

𝑇𝑃𝑅 =
Number of reported connections which are calls

Number of calls
A system design may have a very low FPR and FNR, but

it may still frequently detect flows that are not VoIP calls if
the 𝑃𝑃𝑉 is low and may not detect many VoIP calls in the
network if the TPR is low. We compute a rough estimate
of the number of UDP flows per second based on CAIDA
traces [3]. We observe the analyzed trace collected from a
backbone router’s single port contains around 10 000 UDP
flows per second in 4.49 Gbps of traffic [22]. Assume a back-
bone router in our scenario has 64 ports with similar charac-
teristics, adding up to 640 000 UDP flows per second. In the

case of a traffic analysis-based classification method with an
FPR of 1% – an optimistic assumption – the design would
produce more than 5000 false-positive detections per second.
That means the system may realistically have more false
positives than true positives depending on how many VoIP
calls occur within a second. The same reasoning also leads
to a system overlooking VoIP calls even in case of a low FNR.
Since traffic analysis methods function on probabilistic learn-
ing methods, this outcome is part of the design. However,
small misses are unacceptable in the context of surveillance
and policing, although we can safely tolerate them in other
network applications such as traffic prioritization.
DELTA’s attacker model assumes full observability over

the attacked network, which is realistically the case for our
scenario. DELTA theoretically produces no false negatives
and positives in this setting, assuming enough capacity for
the DBBF. However, in practice, the DBBF is limited by hard-
ware constraints and requires optimization not to waste re-
sources. One way to utilize the DBBF better is to filter its
query space with domain-specific knowledge. Since the PPV
depends on the “population prevalence”, that is, the fraction
of VoIP calls within the queried connections, we can filter
the UDP space into a subpopulation and only query that to
increase the query space’s prevalence.

Selecting which connections to query. DELTA elimi-
nates a significant fraction of the UDP traffic by drawing on
known distinguishing features of large classes of non-VoIP
traffic. Many applications use UDP on known ports, such
as DNS (53), NTP (123), and QUIC (80/443). DELTA trivially
marks such traffic as non-VoIP within the data plane and
does not query these packets in the DBBF. Statistics from
CAIDA traces [22] indicate that eliminating DNS and NTP
alone reduces the query space by more than 80%. Observe
that in practice, VoIP calls run on unknown random ports
for operational reasons.

5.2 Limitations
We discuss three limitations of DELTA for completeness pur-
poses. Due to lack of evidence and unavailability of required
data, we can not make strong assumptions about the edge
cases we mention.

P2P false positives. DELTA draws application-level in-
ference based on network-level connections. One weakness
of this approach is when users time multiplex multiple ap-
plications. For example, users A and B may simultaneously
connect to Skype servers to call users C and D. Meanwhile,
users A and B play an online game where they communicate
over a P2P UDP stream. This scenario results in an incorrect
detection of a Skype call between users A and B.
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Unnecessary DBBF insertions. As mentioned in §3.3, our
signaling packet filtering mechanism searches for specific
domain names to identify signaling packets. However, VoIP
platforms usually facilitate multiple purposes such as confer-
ence calls, messaging, and file sharing. The same signaling
mechanism occurs in all these cases, and DELTA captures
all. Specifically, DELTA keeps track of the IP addresses of
all the service users instead of VoIP callers, which overloads
the DBBF capacity. We can not quantitatively analyze this
inefficiency due to the lack of user-base data. Observe that
this does not cause incorrect call detections.

Service type collisions. As illustrated in Fig. 4, when a
VoIP call is detected, the VoIP service is deduced from the BF
arrays. Since the DBBF has no false negatives by design, the
correct service name is present in this array. However, this
design requires other columns not to have a false positive. If
this requirement is not satisfied, the switch returns multiple
service types, including the ground truth. Since the BF size
is equal for all the columns, but the mentioned false-positive
rates depend on the number of insertions for each service
type, we can not quantitatively analyze this phenomenon.

6 MITIGATION METHODS
DELTA demonstrates that by leveraging programmable data
planes, oppressive entities can practically come up with net-
work attacks. Aswe intend this work as a wake-up call and by
no means condone these activities, we discuss best practices
that users can deploy today to evade DELTA.

Hiding IP addresses behind VPNs. DELTA tracks callers’
IP addresses by tracing their direct connection in the net-
work. The users can protect themselves from DELTA by
hiding their IP addresses via a VPN to relay both their sig-
naling connection with the VoIP servers and their VoIP call
flows. In this scenario, the attacker will not be able to cap-
ture the P2P link as the call will flow in a VPN tunnel. We
tested this methodology manually, and it evades DELTA as
expected. The downside of this countermeasure is that most
countries subject to mass surveillance and censorship also
have difficulty accessing VPN services as these services are
legally banned [79]. Thereby, although technically satisfying,
this solution may not prove to be practically as effective.

VoIP over Tor. Researchers have recently discovered that
VoIP calls over the Tor network are relatively feasible with
today’s Tor infrastructure performance [78]. They claim that
the recent advances in computing and networking now en-
able a sufficient QoS for VoIP calls which researchers have ar-
gued to be not possible multiple times in the past [43, 49, 76].
Community projects such as Orbot [41], Torfone [37], and
Donar [17] facilitate VoIP calls over Tor. Again, the down-
side of these approaches is that the regions that need such

services the most are also the regions that can not legally
access the Tor network [58].

Opt-in to relayed calls. We tested Signal, Skype, Telegram,
and WhatsApp to see if they support relayed mode (see §2.2)
for calls on user request. Among all the services, only Signal
supports selective relaying of calls [53]. Although relayed
calls come with a performance cost [23], privacy-conscious
users can take advantage of this preference setting against
DELTA. Observe that Signal, known for its privacy-conscious
culture, is explicitly banned in various countries [96], hinting
at the possibility of existing surveillance attacks.

Application-side mitigations. VoIP service providers
could counter DELTA’s current implementation by changing
the signaling and streaming traffic features that the attack
exploits. First, the application can encrypt the SNI field such
that the switch cannot identify the VoIP service in the TLS
Client-Hello packet.5 Second, the application can increase
the delay between call signaling and streaming as the in-
creased time interval would require the attacker to store
the signaling state for longer and thus require more mem-
ory. However, although such mitigations make DELTA less
efficient, the underlying side-channel attack remains.

7 RELATEDWORK
A vast amount of VoIP-related security and privacy work
exists in the literature. We divide this section into two main
categories. First, we discuss VoIP protecting systems where
the goal is to protect the VoIP metadata from leaking and
anonymizing the users against observing entities. Second,
we discuss traffic analysis attacks against VoIP applications.

7.1 VoIP defense
As mentioned in §6, VoIP over Tor is the only solution with
existing VoIP software and an underlying anonymization
network readily available. However, Tor is vulnerable to traf-
fic analysis attacks due to its asynchronous circuit switching
and message passing [48]. Unlike VoIP over Tor, Herd [49]
is a metadata-private system specific to VoIP that can also
defend against traffic analysis. However, Herd assumes the
user connects the system through an honest server.

Loopix [65] hides metadata by relaying messages through
multiple mix servers and randomly delaying messages at
each hop. However, the high variance latency of Loopix is
unsuitable for VoIP calls. Karaoke [47] is a messaging system
that guarantees differential privacy for metadata by routing
messages through a mixnet and adding noise. Karaoke’s min-
imum end-to-end latency is six seconds, making it unfeasible
for VoIP calls. Systems such as Pung [9] and Dissent [93] rely
5An IETF Internet-Draft suggests a mechanism for adding this functionality
to TLS 1.3, namely TLS Encrypted Client-Hello. [69].
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on CPU-intensive cryptographic primitives to protect the
metadata and therefore suffer from high latency and poor
scalability. Yodel [48] is the first system to hide voice call
metadata from an adversary that controls the network and
can compromise the servers. As with the other systems men-
tioned, Yodel is yet to be deployed and must reach a sufficient
scale to provide enough bandwidth for many users.

7.2 VoIP attack
Numerous VoIP attacks proposed in the literature uncover
caller and callee IP addresses similar to DELTA. Lu et al. [52]
proposed to observe the sequence of timestamps of the VoIP
packets and used Fourier transforms to correlate the relayed
flows with each other. Coskun et al. [28] proposed a locality-
sensitive hash algorithm to correlate relayed streaming flows.
They use packet sizes and the packet arrival time as inputs
to the algorithm. Wang et al. [25, 90] proposed an active
correlation attack where the attacker embeds timing water-
marks into VoIP flows by slightly delaying packets selected
randomly. Zhang et al. [99] proposed a timing attack that
works by observing the flows’ unique starting and ending
times to correlate the flows that belong to the same connec-
tion. This line of work requires an off-line analysis of call
flows to correlate or process the flow characteristics. Besides,
the implied attacks work on relayed calls, which was the
industry standard before 2011 (i.e., Microsoft’s acquisition
of Skype). We believe these works are still crucial against
relayed calls and deem DELTA orthogonal to these attacks.
Another line of work is in traffic analysis attacks, where

the statistical learning methods apply to the general classifi-
cation of traffic. Although these papers do not necessarily
target VoIP traffic, we assume they can accurately achieve
VoIP classification. Moore et al. [56] proposed a Bayesian
method to identify application protocols. Zhang et al. [100]
devised a robust traffic classification scheme by combining
supervised and unsupervised learning. Williams et al. [92]
compared five supervised models in their classification ac-
curacy and computation performance. Nguyen et al. [59]
trained ML models with various techniques in a way that
can classify bi-directional flows. Ye et al. [98] developed a
hybrid method with heuristic rules to classify P2P traffic. Sun
et al. [82] proposed a traffic classification technique based
on transfer learning. Di Mauro et al. [31, 32] analyzed the
statistical features of Skype and WebRTC flows by using a
decision tree and random forest algorithm and report their
results over a set with several hundreds of flows.
In the last three years, a line of work on applying traffic

classification based on flow analysis in programmable switch
data planes has been evolving. Busse-Grawitz et al. [19] and
Lee et al. [50] implemented random forests in the data plane

for in-network traffic classification. Xiong et al. [94] imple-
mented various supervised machine learning approaches
into a P4-programmable FPGA for in-network traffic classifi-
cation. Barradas et al. [14] implemented a hybrid-offloading
traffic classification approach to detect botnet chatter and
fingerprint websites. These works show no evidence of de-
tecting the VoIP service from the call flows or achieving high
precision and recall suitable to surveillance or censorship
needs. We consider DELTA orthogonal to traffic analysis
approaches but with a better focus on our specific use case.

8 CONCLUSION
This work is a wake-up call against threats potentially exac-
erbated by commercial off-the-shelf programmable switches.
We demonstrate the risk by introducing DELTA, a novel
network-level side-channel attack that can efficiently iden-
tify VoIP calls. DELTA keeps track of the VoIP signaling
mechanism used for peer discovery and call setup to reveal
the addresses of a call’s participants and identifies the VoIP
service provider even if the traffic is encrypted.
In summary, we show that programmable data planes al-

low identifying VoIP calls in-path, in real-time, and at scale
by introducing three main components: (i) a parsing mecha-
nism that extracts domain names from TLS Client-Hello
packets; (ii) a dissemination technique that broadcasts de-
tected packets within the network; and (iii) a space-efficient
query data structure that continuously keeps track of the
inserted entries’ liveness.

Our experiments on real and synthesized VoIP traces show
that a single switch can simultaneously hold up to 100 000
unique VoIP calls for each VoIP application and inspect at
least 5 million Client-Hello packets per second.
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