
1

Machine Learning-based
Detection of C&C Channels
with a Focus on the
Locked Shields Cyber
Defense Exercise

Abstract: The diversity of applications and devices in enterprise networks combined
with large traffic volumes make it inherently challenging to quickly identify malicious
traffic. When incidents occur, emergency response teams often lose precious time in
reverse-engineering the network topology and configuration before they can focus on
malicious activities and digital forensics.

Nicolas Känzig
Department of Information Technology
and Electrical Engineering
ETH Zürich
Zürich, Switzerland
kaenzign@student.ethz.ch

Luca Gambazzi
Science and Technology
armasuisse
Thun, Switzerland
luca.gambazzi@armasuisse.ch

Laurent Vanbever
Department of Information Technology
and Electrical Engineering
ETH Zürich
Zürich, Switzerland
lvanbever@ethz.ch

Roland Meier
Department of Information Technology
and Electrical Engineering
ETH Zürich
Zürich, Switzerland
meierrol@ethz.ch

Vincent Lenders
Science and Technology
armasuisse
Thun, Switzerland
vincent.lenders@armasuisse.ch

2019 11th International Conference on Cyber Conflict:
Silent Battle
T. Minárik, S. Alatalu, S. Biondi,
M. Signoretti, I. Tolga, G. Visky (Eds.)
2019 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal
use within NATO and for personal or educational use when for non-profit or
non-commercial purposes is granted providing that copies bear this notice
and a full citation on the first page. Any other reproduction or transmission
requires prior written permission by NATO CCD COE.

2

1. INTRODUCTION

Large enterprise or campus networks handle data from a vast set of different
applications, protocols, and devices. Identifying malicious traffic in such networks
is similar to the figurative problem of finding a needle in a haystack, raising the need
for effective tools to automate this process and to support defenders such as computer
emergency response teams (CERTs) in their operation. As network traffic is not only
voluminous but also very diverse, these tools need to adapt to different contexts.

In this paper, we present a system that quickly and reliably identifies Command and
Control (C&C) channels without prior network knowledge. The key idea is to train
a classifier using network traffic from attacks that happened in the past and use it
to identify C&C connections in the current traffic of other networks. Specifically,
we leverage the fact that – while benign traffic differs – malicious traffic bears
similarities across networks (e.g., devices participating in a botnet act in a similar
manner irrespective of their location).

To ensure performance and scalability, we use a random forest classifier based on a
set of computationally-efficient features tailored to the detection of C&C traffic. In
order to prevent attackers from outwitting our classifier, we tune the model parameters
to maximize robustness. We measure high resilience against possible attacks – e.g.,
attempts to camouflaging C&C flows as benign traffic – and packet loss during the
inference.

We have implemented our approach and we show its practicality on a real use case:
Locked Shields, the world’s largest cyber defense exercise. In Locked Shields,
defenders have limited resources to protect a large, heterogeneous network against
unknown attacks. Using recorded datasets (from 2017 and 2018) from a participating
team, we show that our classifier is able to identify C&C channels with 99% precision
and over 90% recall in near real time and with realistic resource requirements. If the
team had used our system in 2018, it would have discovered 10 out of 12 C&C servers
in the first hours of the exercise.

Keywords: malware, botnets, machine learning, digital forensics, Locked Shields,
network defense

3

Recent alarming examples of malicious software exploiting a remote infrastructure in
order to issue directives to steal or modify data or performing distributed denial-of-
service attacks include CryptoLocker [1] or the Mirai botnet [2].

Machine learning-based models have repeatedly been proven to outperform humans
in tasks involving large data volumes and high-dimensional feature spaces. However,
training these models to detect malicious activity in networks is a particularly
challenging task, because the methods used by modern threat actors are continuously
evolving. Moreover, the profiles of legitimate background traffic can vary strongly
among different networks and their users. Consequently, such solutions might perform
well in the environment they have been trained in, while failing in new deployments.

In this paper, we focus on one particular type of malicious traffic: communication
between compromised hosts and their Command and Control (C&C) servers. C&C
traffic only depends on the botnet (i.e. the communication scheme between the C&C
server and the bots) and is invariant to the networks to which the bots are connected.
This makes the development of machine learning-based models that perform reliably
in different contexts more feasible. We argue that identifying this type of traffic is
fruitful because it means that compromised hosts can be identified (and eventually
blocked, isolated or patched) before an actual attack is launched.

The work that we present in this paper is based on data from Locked Shields [3], the
world’s largest cyber defense exercise. While Locked Shields is only an exercise, it
reproduces critical infrastructure under the intense pressure of severe cyberattacks.
Moreover, it provides a setting that closely matches the real world: in practice,
defenders have limited resources to protect a large, heterogeneous network against
unknown attacks. And because it is an exercise, we obtained a ground-truth of logs
from the attackers describing when and where they were active, something which is
hardly possible for real incidents.

Problem statement: Given the constraints (e.g. in terms of computational resources
and lack of familiarity with the network) that defending teams face during the
Locked Shields exercise, we aim to design a system that can identify C&C traffic and
compromised hosts.

Challenges: Solving this problem is challenging for the following reasons:

•	 Benign and malicious traffic profiles can vary considerably between different
Locked Shields exercises.

	 This requires a solution with high generalization and robustness.

4

•	 Defenders have a very limited budget for computational resources.
	 This requires an efficient classification technique.
•	 Defenders have a small amount of storage capacity.
	 This prevents them from storing large amounts of network traffic.
•	 Defenders have a small bandwidth to access the attacked network.
	 This makes it impossible to send large amounts of data to an external system.

Our approach: Our key idea is to use data from past iterations of Locked Shields
to efficiently identify similar-looking C&C traffic in future exercises. We do this by
creating a labeled dataset containing flow-based features extracted from raw Locked
Shields traffic captures, which we then use to train a supervised classifier (random
forest) to flag C&C traffic. Our approach is efficient enough to be deployed during
future Locked Shields exercises.

Novelty and related work: Detecting C&C traffic has been the focus of many research
papers in recent years (cf. surveys in [4] [5]), many of which also pursue classifier-
based approaches using machine learning algorithms. [6] proposes a two-stage system
for identifying P2P C&C traffic using a decision tree and a random forest classifier.
To train a random forest classifier, [7] leverages the fact that malware-related domains
are likely to have an inconsistent pool of requesting hosts. [8] develops a system for
classifying malicious C&C servers using NetFlow data, extracting features related to
flow sizes, client access patterns and temporal behavior.

In contrast to these approaches, we use a new set of flow-based features and evaluate
our models on two new and completely labeled datasets (Locked Shields 2017 and
2018). While most studies train and evaluate their models on different parts of the
same dataset, we use train- and test-sets that have been acquired independently
in different setups. This provides strong evidence for the ability of our system to
perform in new environments. Moreover, a minority of the solutions proposed in past
investigations claim to run in real time [4]. In our approach, we combine quickly
computable features (e.g. number of packets per flow) with an efficient random forest
algorithm, which makes real-time calculation feasible.

Contributions: The main contributions of this paper are:

•	 A selection of features that allow identifying C&C channels while being fast
and efficient to compute.

•	 An efficient random forest model that classifies between C&C traffic and
normal traffic with high accuracy.

•	 An implementation of the system that is suitable for deployment in future
Locked Shields exercises.

5

•	 An evaluation based on real data from Locked Shields 2017 and 2018,
which shows that our system allows defenders to identify C&C traffic, C&C
servers and compromised hosts.

Organization: The remainder of this paper is organized as follows. In Section 2,
we provide background information on the Locked Shields exercise and define the
attacker model. In Section 3, we present our system to identify C&C traffic before we
evaluate it in Section 4. In Section 5, we discuss the outcome and finally, we conclude
in Section 6.

2. BACKGROUND ON LOCKED SHIELDS

In this section, we explain how Locked Shields is organized and give details about the
roles of defenders and attackers.

A. Exercise Organization
Locked Shields is the largest and most complex live-fire global cyber defense
exercise, with more than 1000 participating cyber experts from 30 nations [9]. It takes
place every year and is organized by the NATO Cooperative Cyber Defence Centre of
Excellence (CCDCOE) in Tallinn (Estonia) [3].

For the exercise, participating countries send Blue Teams, which represent response
teams whose main task is to secure and protect the network infrastructure. Whereas
each Blue Team operates in an isolated instance of the network (Gamenet), a Red
Team runs attacks against all these networks in order to compromise or degrade the
performance of the connected systems.

In Figure 1, we illustrate the environment during an exercise.

6

FIGURE 1. LOCKED SHIELDS ENVIRONMENT OVERVIEW.

The environment simulated during the exercise changes every year. In this paper,
we focus on the last two occurrences of Locked Shields (2017 and 2018). In 2017,
the Blue Teams had to maintain the services and networks of a military air base; in
2018, a major civilian Internet service provider, a military base and other critical
infrastructures of a fictional country were targeted in cyber attacks.

B. Environment and Constraints for the Defenders
Prior to the exercise, the defenders (Blue Teams) receive an architecture scheme
of the original Gamenet that shows the topology and connected devices. However,
the scheme does not show changes put in place by the Red Team (e.g. additional
connections between the Gamenet and the Internet to bypass the main gateways).

In addition, each Blue Team obtains two virtual machines (VMs) inside the Gamenet,
which it can use during the exercise to install its own tools (e.g. to perform forensics
or deploy patches). Moreover, the traffic exchanged in the Gamenet is forwarded to
one VM in order to allow the Blue Team to perform on-site analysis and detection.
However, the performance of this VM is limited and access to it is only possible via
a low-bandwidth VPN tunnel. In order to rapidly counter Red Team activity, the Blue
Team has to deploy efficient analysis tools (given the constraints on computation and
bandwidth), intrusion detection systems, and to avoid sending voluminous data to an
external infrastructure. The system that we present in this paper is designed to work
in such a restricted environment.

After the exercise, the Red Team delivers reports to the Blue Teams summarizing their
malicious activities.

7

C. Attacker Model
The attackers (Red Team) perform their activities according to a tight schedule of
missions and goals. Waves of attacks hit the Blue Team for the entire duration of the
exercise. Some attacks are limited to a specific phase of the exercise while others are
repeated during the entire exercise.

Prior to the exercise, the Red Team knows the configuration of the entire Gamenet and
can use this knowledge to prepare suitable attacks (e.g. leveraging outdated systems).

In order to systematically orchestrate the large number of attacks on all Gamenets,
the Red Team uses Cobalt Strike as a C&C framework. This allows automatizing
injections, deployment of malicious code and C&C datalink management.

3. SUPERVISED MACHINE LEARNING FOR
DETECTING C&C CHANNELS

In this section, we explain how we use supervised machine learning to identify
C&C channels in the Locked Shields exercise. First, we provide an overview of our
approach. Afterwards, we describe the data and labeling that we used. Finally, we
explain how we selected the features and the machine learning model for this task.

A. Overview
Our system consists of two basic phases (Figure 2): offline training and online
classification. In the offline training phase (which was done prior to the exercise), we
used data from past Locked Shields exercises and processed them in order to obtain a
labeled dataset to train a supervised classifier that could be used for live classification
of C&C flows during the exercise.

FIGURE 2. SYSTEM OVERVIEW.

8

B. Data Analysis and Enrichment
In this section, we describe the data sources we used for labeling and training and the
preprocessing steps we applied.

1) Available Data Sources
We built our labeled dataset from two sources: raw traffic captures and Red Team logs.

a) Raw Traffic Captures
We obtained pcap traffic traces containing the Gamenet activity recorded during Locked
Shields 2017 and 2018 (LS17, LS18) from a participating country (Switzerland). The
packets are not sampled, anonymized, or truncated. We extracted the features used to
train our models from this data.

b) Red Team Logs
The activities of the Red Team are logged in different documents generated by the
Cobalt Strike framework [10]. Among others, these documents contain indicators of
compromise (e.g. IP addresses and domain names of C&C servers) and an activity
report, which contains a timeline of all Red Team activities (e.g. commands that were
executed on compromised machines). We used these log files to label the C&C flows.

2) Data Preprocessing
Before extracting features, we preprocessed the dataset in three ways: (i) we truncated
packets to reduce the size of the dataset; (ii) we aggregated packets to flows; and (iii)
we mapped domain names and IP addresses in the traffic capture.

a) Truncating Packets
Since capturing and analyzing full packets in real time is difficult for the Blue Team
during the exercise, our approach does not require packet payloads. We used only the
first 96 bytes (enough to capture everything up to the header of the transport layer) of
each packet, which reduced the size of our dataset by approximately 75 percent. The
performance of our final models did not decrease due to the truncation.

b) Flow Extraction
We aggregated the packets from the packet trace into flows, since our model operates
at the flow level. A flow is defined by its 5-tuple (source IP, destination IP, source port,
destination port, transport layer protocol). It starts with a TCP SYN packet and ends
when the first TCP FIN packet is sent or after a timeout of 15s. We used CICFlowMeter
[11] to extract flow-based features from the raw traffic traces.

9

c) Domain Name Resolution
The Red Team logs list some devices only by their domain name, thus we needed a
mapping from these domain names to the associated IP addresses. We used Bro [12],
a network analysis framework, to resolve the domain names to IP addresses from
the packet traces, using information contained in the HTTP (host header), TLS (with
server name indication), or DNS.

C. Data Labeling
After extracting a list of IP addresses and domain names of C&C servers from the
Red Team logs, the labeling process was straightforward: we labeled all flows where
at least one endpoint was a C&C server (i.e. listed in the Red Team logs) as malicious
and all other flows as benign. The intuition behind this approach was that there was
no benign reason for any device to contact a C&C server. It is safe to assume that any
device communicating with a C&C server is compromised.

D. Feature Selection and Extraction
In this section, we explain how we selected and extracted the features that our classifier
would use to identify C&C flows.

1) Feature Extraction
For computing the features, we used CICFlowMeter [13] (version 3.0), an open source
tool for extracting flows from packet traces and computing large sets of features.
CICFlowMeter focuses on time-related features such as the inter-arrival time of
packets, active and idle times separately for packets in each direction, while including
minimum, maximum, mean and standard deviation [11]. These features are suitable
for our purposes because they can be extracted with little computational effort.

To capture the fact that C&C servers are typically located outside the internal network,
we added an additional feature (Int/Ext Dst IP), indicating whether the destination IP
address of a flow is within the internal address space.

Table I lists all features that we considered in our selection process.

10

TABLE I: COMPLETE LIST OF FEATURES CONSIDERED IN THE FEATURE SELECTION.
ONE ROW CAN DESCRIBE MULTIPLE FEATURES (E.G. THE MINIMUM, MAXIMUM, MEAN AND
STANDARD DEVIATION OF A PROPERTY)

2) Feature Selection
To identify the best set of features, we removed correlating and irrelevant features
by applying a recursive feature elimination scheme based on random forest Gini
importance scores [14].

In each iteration, we trained a random forest classifier with the dataset from LS17 and
all the considered features. Afterwards, we removed the feature with the lowest score
from the set of considered features. Thus, we obtained a feature ranking, where the one
that is first removed has the lowest rank. Eliminating features one by one is crucial, as
importance scores can spread over multiple features with redundant information (i.e.
if multiple important features are strongly correlated, their scores can all be low in a
particular iteration).

The 20 most important features according to our feature selection are listed below in
descending order of importance (except for the last two features, which we included
in the feature set based on preliminary evaluations).

Nr

1

2-3

4-5

6-13

14-23

24-35

36-37

38-40

41

42-45

46-49

50

51

52-53

54-55

56-57

58-59

60-61

62-63

64-67

68-71

72-73

74

75

76

77

11

Tot Fwd Pkts, Flow IAT Mean, Fwd IAT Max, Flow Pkts/s, Bwd Pkt Len Min, FIN
Flag Cnt, Init Fwd Win Byts, Active Mean, Bwd IAT Mean, Bwd Pkt Len Std, Fwd
Seg Size Min, Fwd Pkt Len Std, Tot Bwd Pkts, Bwd Header Len, Subflow Fwd Byts,
Subflow Bwd Pkts, Fwd IAT Tot, Flow IAT Max, Int/Ext Dst IP, L3/L4 Protocol

E. Model Selection
We tested a variety of different supervised models on our data: Artificial Neural
Network, Support Vector Machine, Logistic Regression, Naive Bayes, K-Nearest
Neighbors and Random Forest (RF). The main difficulty in our task was that the
distribution of the background traffic was different in the LS17 and LS18 data, as
benign and attack traffic profiles change every year. However, the distribution of the
C&C session features hardly varies, due to the fact that the same tool (Cobalt Strike)
is used to maintain these sessions. We found that RF performed best under these
circumstances. Furthermore, RF models are highly efficient and require low training
and inference times, which is decisive for real-time deployments.

1) Model Configuration
As a baseline model, we used an RF classifier with default configurations from scikit-
learn [15] (i.e. an ensemble of 10 fully expanded trees). However, this resulted in large
trees (30,000 nodes for the model trained on LS17, 70,000 for LS18) and we found
that constraining the maximal tree-depth significantly increased the robustness of our
model. We empirically found that a maximum tree-depth of 10 drastically reduced the
node count (to 700 for LS17 and 900 for LS18). However, reducing the depth further
had a negative impact on the performance. Moreover, we found that increasing the
number of trees to 128 further improved the robustness and prediction quality with
negligible impact on computational cost. In the following, we refer to configurations
with a maximum depth of 10 and 128 trees as “tuned” configurations.

2) Robustness Against Camouflage
In the following, we analyze possible attack vectors against our model, assuming
a white-box scenario where the attacker has full knowledge of the model and the
features we deploy. We focus on two strategies that the attacker can follow: modifying
Cobalt Strike’s C&C configuration, and altering the C&C flows by other means (e.g.
by changing the network stack on the infected machines).

a) Changing the appearance of the C&C sessions using Cobalt Strike
As our model detects C&C sessions maintained using Cobalt Strike, we first analyze
the options this framework provides to alter their appearance. The two main parameters
the Red Team can use during the exercise are the sleep-period and jitter of a C&C
session. The sleep-period defines the time interval used to periodically contact the
C&C server. The jitter configures the deviation from this periodicity. Our features are

12

invariant to both of these parameters, as they focus on timing statistics within single
connections and do not depend on the time elapsed between the periodic connections
of a C&C session.

Cobalt Strike’s Malleable C2 tool [16] allows the custom design of the HTTP headers
of the packets exchanged within C&C sessions to avoid detection. However, our
model does not rely on features extracted from HTTP headers.

We conclude that bypassing detection of our model by altering Cobalt Strike’s C&C
configurations is infeasible as our features are invariant to the options the framework
provides.

b) Identifying attack vectors for manipulating feature values
Our classifier identifies flows that look like Cobalt Strike C&C channels. To avoid
this, an attacker might attempt to camouflage these C&C flows as normal traffic for
the given network.

We observe that most of the feature values can be altered either by injecting additional
packets (to manipulate statistics such as inter-arrival time or packet counts) or by
altering the packet sizes (which affects features such as the download size). Many
of these tampering attempts could be prevented by additional checks in the feature
extraction phase (e.g. sequence number checking for packet injections). However,
since this is computationally expensive, we assume that the defenders cannot do this.

To simulate the robustness of our model in such scenarios, we conducted experiments
involving tampering with the feature values, as described in Section 4.D.

4. EVALUATION

In this section, we evaluate our classifiers based on data recorded by the Swiss Blue
Team from Locked Shields 2017 and 2018. After providing more details about the
methodology (Subsection A), we evaluate precision and recall (Subsection B), runtime
(Subsection C), robustness against camouflaging (Subsection D) and incomplete
traffic captures (Subsection E).

A. Methodology
In this section, we summarize the datasets that we used for the evaluation, the
environment in which we conducted the experiments and the parameters that we used.

13

1) Datasets
To evaluate the performance of our models, we used the complete LS17 dataset for
training and the LS18 dataset for testing and vice versa. Therefore, our evaluation
corresponds to a case where our classifier is used for classifying previously unseen
data in a different network. In the following, we will refer to models trained on the full
LS17 or LS18 datasets as LS17-models and LS18-models, respectively (cf. Table III).

In Table II, we summarize the baseline information about the datasets that we used
for the evaluation.

TABLE II: BASELINE INFORMATION ABOUT THE DATASETS USED.

2) Environment
We conducted all experiments and calculations on a virtual machine running Ubuntu
16.04 (64 bit), with 10 Intel Xeon E5-2699 cores and 16 GB RAM. The implementation
was based on Python 3.6 and scikit-learn (0.19.2) [17].

3) Parameters and Models
We evaluated two configurations of our classifier: one with the default scikit-learn
parameters [15], and the other with the tuned parameters described in Section 3.E. We
refer to these configurations as “baseline” and “tuned” and summarize them in Table
III. We trained all models using the 20 features obtained from the recursive feature
elimination scheme described in Section 3.D.

TABLE III: CHARACTERIZATION OF MODELS USED IN OUR EVALUATION.

B. Precision/Recall
We used widespread metrics precision (i.e., the percentage of reported C&C flows that
are actual C&C flows) and recall (i.e., the ratio between the correctly identified C&C
flows and all the C&C flows present in the dataset) to measure the prediction quality

Dataset

LS17

LS18

Size

114 GB

216 GB

Packets

288’940’662

557’783’930

Flows

9’070’828

16’379’346

C&C Flows

1’239’041 (13.7%)

1’818’006 (11.1%)

Model

LS17-baseline

LS17-tuned

LS18-baseline

LS18-tuned

Training data

LS17

LS17

LS18

LS18

Testing data

LS18

LS18

LS17

LS17

RF size

10 trees

128 trees

10 trees

128 trees

RF depth

unconstrained

10

unconstrained

10

14

of our models. High precision is particularly important in the given task because a
high number of false positives would mislead the defenders during their operation.

Table IV lists the precision and recall scores for all models. We repeated the evaluation
ten times with different random seeds to train the models, and we report the medians
of the results. The results show that all models achieve high precision and recall while
tuned configuration clearly outperforms the baseline configuration.

TABLE IV: THE TUNED MODELS ACHIEVE HIGH PRECISION AND RECALL (MEDIANS)

C. Runtime
In this experiment, we evaluate the runtime of three phases:

1.	 Extracting features from the training dataset
2.	 Training the model
3.	 Applying the model on the testing dataset

In Table V, we report the time it takes to extract features from both datasets (using
CICFlowMeter). We note that the feature extraction tool extracts all 77 features from
Table I. The runtime could be significantly improved by calculating only the 20
selected features and by using a more efficient implementation.

TABLE V: FEATURE EXTRACTION TAKES LESS THAN 45 MIN (LS17) AND LESS THAN
90 MIN (LS18) FOR DATASETS CONTAINING ABOUT 38 HOURS OF NETWORK TRAFFIC.

In Table VI, we report the time it takes to train and test the model on both datasets. As
above, we point out that the training phase is not time-critical as it is done prior to the
exercise. As the results show, running predictions on the whole dataset takes less than
one minute. In a practical deployment, the inference would be performed on much
smaller sets of samples, which makes real-time detection feasible.

Model

LS17-baseline

LS17-tuned

LS18-baseline

LS18-tuned

Precision

0.94

0.99

0.98

0.99

Recall

0.98

0.98

0.86

0.90

Dataset

LS17

LS18

Runtime

42 min

85 min

Extracted Flows

9’070’828

16’379’346

15

TABLE VI: TRAINING AND INFERENCE TIMES OF THE BASELINE
AND TUNED MODEL CONFIGURATIONS

D. Robustness Against Camouflaging
In this experiment, we simulate an attacker attempting to camouflage C&C flows as
normal traffic. To model an attack against a particular feature, we replace the feature
values in the malicious samples (i.e. the C&C flows) with values randomly subsampled
from benign samples. As a result, this feature no longer helps in distinguishing C&C
flows from normal flows.

In Figure 3 (LS17) and Figure 4 (LS18), we plot the precision and recall of the
respective models depending on the number of tampered features. The results hold
under the assumption that an attacker that attacks n features would target the n most
relevant features according to Section 3.D. (which is a promising strategy). We
evaluate the impact of tampering with 5 to 14 features on each model with 10 different
random seeds and plot the median as well as the 95% confidence interval.

The results show that the tuned model reacts much less sensitive to camouflaging
attempts and achieves high performance even if many features are tampered with
(precision falls below 90% when manipulating >12 features). Recall of the LS18
model drops sharply when attacking more than 5 features, however, its precision
remains high, meaning that the predictions the model makes are still reliable. Further,
we observe that the variance among the tuned models is much lower than that of the
baseline models.

FIGURE 3. ACHIEVED PRECISION AND RECALL FOR LS17 IF AN ATTACKER TRIES TO CAMOUFLAGE
C&C FLOWS. OUR TUNED MODEL IS ROBUST AGAINST TAMPERING, FOR UP TO 10 FEATURES.

Model

LS17-baseline

LS17-tuned

LS18-baseline

LS18-tuned

Training time

120 s

1117 s

390 s

2828 s

Inference time

6 s

50 s

4 s

30 s

16

FIGURE 4. ACHIEVED PRECISION AND RECALL FOR LS18 IF AN ATTACKER TRIES TO CAMOUFLAGE
C&C FLOWS. OUR TUNED MODEL ACHIEVES A HIGH PRECISION EVEN IF 12 FEATURES ARE
ATTACKED BUT THE RECALL DROPS.

E. Robustness Against Packet Loss
In this experiment, we evaluate the impact of packet loss, which could occur due to the
limited resources of the defenders to capture packets in real time during the exercise.
We simulate this by randomly dropping between 10 and 90 percent of the packets.

The results in Figure 5 show that the tuned models achieve high precision (> 95%)
even for 90% packet loss. This means that even for high losses, the raised alerts stay
accurate. However, the recall decreases approximately linearly with the packet loss.
Presumably, this is because C&C flows with too many dropped packets are no longer
recognized as such, while the model still detects less affected flows.

FIGURE 5. IMPACT OF PACKET LOSS ON THE LS17-MODEL. THE CURVES SHOW THE MEAN VALUES
OVER 10 MEASUREMENTS. IN OUR TUNED MODEL, PACKET LOSS HARDLY IMPACTS PRECISION.

17

5. DISCUSSION

In this section, we discuss the outcomes of the experiments conducted in this paper as
well as details of possible real-world deployments and potential extensions.

A. Identifying C&C Servers
The ability to detect individual C&C flows can obviously be used to identify C&C
servers (the destinations of such flows) and compromised hosts (the sources of the
flows). In an additional experiment, we observed that running our system for a short
time period of 30 minutes at the beginning of the exercise (11am-12 pm in Locked
Shields 2018) was enough to identify most of the C&C servers (10 out of 12 listed in
the Cobalt Strike reports). We further observed 5 different source IP addresses from
the Blue Team’s network communicating with these servers, suggesting that these
hosts had been compromised at this point in time.

B. Running Multiple Models in Parallel
In this paper, we used datasets from two occurrences of Locked Shields: one to train
the model, and the other to test it. In the future, when more datasets are available, we
suggest training multiple models and conducting live classification during the exercise
on all of them. This would make it even harder for the Red Team to camouflage C&C
traffic as benign flows, because it needs to match the features of benign flows in
multiple different models (while the features of C&C flows are similar in each model).
Performing the inference only slightly increases the computational cost and is thus
feasible during the exercise. Since we have data from only two iterations of Locked
Shields, we could not evaluate this approach.

C. Practical Deployment for Future Locked Shields Exercises
In order to use our system in the next Locked Shields exercise, a Blue Team needs to
perform three steps:

1.	 Train one or multiple models with labeled data from past exercises
2.	 Prepare the VM to record network traffic and compute the features
3.	 Run the trained models with the recorded features during the exercise

Step 1 is not time-critical and can be done at any time prior to the exercise. To
counteract camouflaging attempts by the Red Team, we suggest using data from
different years and training multiple models (cf. Section 5.B).

For Step 2, the Blue Team can use any tool to capture the traffic (no payloads required)
and calculate the flow features. In our experiments, we used CICFlowMeter; however,
more efficient implementations are possible.

18

Step 3 consists of feeding the extracted features to one or more models. Information
about detected C&C flows can be passed to an intrusion alert system used by the
defenders to coordinate security responses.

As our evaluation shows, our classifier is able to predict C&C flows with 99%
precision and over 90% recall. By evaluating the system on two datasets originating
from two different occurrences of Locked Shields (2017 and 2018), we provided
strong evidence for the success of a deployment in future exercises on previously
unseen data.

In an additional experiment, we simulated a real-case deployment, where we applied
our system for a short 30 minutes time interval in the first phase of the LS18 exercise.
There, our system unveiled almost the complete C&C infrastructure used by the Red
Team (10 out of 12 C&C Servers).

D. Challenges and Deployment in Other Environments
In this paper, we have focused on a very specific use case for C&C detection (Locked
Shields, Cobalt Strike). One of the main limitations of supervised-learning-based
systems is that while they are highly effective in detecting anomalies that were labeled
in the training set, they fail to detect new and unknown attacks. A further challenge
is that the distribution of the legitimate background traffic may strongly vary among
different networks.

By expanding the training data with more C&C traffic types and including a wider
range of legitimate traffic profiles, our approach could be adapted for deployment
in other environments. Moreover, data augmentation techniques such as domain
randomization – currently applied with great success in the deep learning domain
– are other promising paths towards broader generalization. For instance, OpenAI
recently developed a human-like robotic hand to manipulate physical objects with
unprecedented dexterity [18]. The training was performed solely in a simulated
environment, but by randomizing the physical properties in the simulation, the final
model generalized well enough to be deployed on a real physical hand. Although our
application is very different, the same concepts could be applied to network traffic
data to obtain richer training sets leading to more robust detection systems.

6. CONCLUSION

In this paper, we present a system for identifying C&C channels using supervised
machine learning. As a typical use case for such a system, we focus on Locked Shields,
the world’s largest cyber defense exercise. Our evaluation shows that the system could

19

be deployed by defenders in this exercise and that it identifies C&C traffic with high
precision and recall. We use real data from one participating Blue Team and show that
if this team had trained the classifier with the data from 2017, it would have identified
C&C channels in Locked Shields 2018 with 99% precision and 98% recall. Further,
running the system during a time interval of just 30 minutes in LS18 would have been
enough to identify 10 out of 12 C&C servers used by the Red Team.

Acknowledgments
We thank the Swiss Blue Team for sharing their data and expertise with us and for
their constant support throughout this project.

REFERENCES

[1] 	 “How a British SMB survived a nightmarish cryptolocker ransom attack | Security | Computerworld UK,”
[Online]. Available: https://www.computerworlduk.com/security/how-british-smb-survived-nightmarish-
cryptolocker-ransom-attack-3677593/.

[2] 	 M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A.
Halderman, L. Invernizzi, M. Kallitsis and others, “Understanding the mirai botnet,” in USENIX Security
Symposium, 2017.

[3] 	 “Locked Shields 2017,” [Online]. Available: https://ccdcoe.org/ locked-shields-2017.html.
[4] 	 A. H. Lashkari, G. D. Gil, J. E. Keenan, K. Mbah and A. A. Ghorbani, “A Survey Leading to a New

Evaluation Framework for Network-based Botnet Detection,” in Proceedings of the 2017 the 7th
International Conference on Communication and Network Security, 2017.

[5] 	 M. Feily, A. Shahrestani and S. Ramadass, “A survey of botnet and botnet detection,” in Third
International Conference on Emerging Security Information, Systems and Technologies, 2009.
SECURWARE’09.

[6] 	 B. Rahbarinia, R. Perdisci, A. Lanzi and K. Li, “Peerrush: Mining for unwanted p2p traffic,” in
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2013.

[7] 	 M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou and D. Dagon, “Detecting Malware Domains at the
Upper DNS Hierarchy,” in USENIX security symposium, 2011.

[8] 	 L. Bilge, D. Balzarotti, W. Robertson, E. Kirda and C. Kruegel, “Disclosure: detecting botnet command
and control servers through large-scale netflow analysis,” in Proceedings of the 28th Annual Computer
Security Applications Conference, 2012.

[9] 	 “CCDCOE News (26 April 2018),” [Online]. Available: https://ccdcoe.org/more-1000-cyber-experts-30-
nations-took-part-locked-shields.html.

[10] 	 “Cobalt Strike Reporting,” [Online]. Available: https://www.cobaltstrike.com/help-reporting.
[11] 	 G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun and A. A. Ghorbani, “Characterization of Encrypted and

VPN Traffic using Time-related,” in Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP), 2016.

[12] 	 “The Bro Network Security Monitor,” [Online]. Available: https://www.bro.org/.
[13] 	 “CICFLOWMETER A network traffic Biflow generator and analyzer,” [Online]. Available: http://www.

netflowmeter.ca/.
[14] 	 G. Louppe, L. Wehenkel, A. Sutera and P. Geurts, “Understanding variable importances in forests of

randomized trees,” in Advances in neural information processing systems, 2013.
[15] 	 “sklearn RandomForestClassifier,” [Online]. Available: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html.
[16] 	 “Cobalt Strike 3.11 Manual,” [Online]. Available: https://www.cobaltstrike.com/downloads/csmanual311.

pdf.
[17] 	 “scikit-learn Machine Learning in Python,” [Online]. Available: https://scikit-learn.org.
[18] 	 OpenAI, “Learning dexterous in-hand manipulation,” 2018.

